S型函數
外觀
S型函數(英語:sigmoid function,或稱乙狀函數)是一種函數,因其函數圖像形狀像字母S得名。其形狀曲線至少有2個焦點,也叫「二焦點曲線函數」。S型函數是有界、可微的實函數,在實數範圍內均有取值,且導數恆為非負[1],有且只有一個拐點。S型函數和S型曲線指的是同一事物。
其級數展開為:
其他S型函數案例見下。在一些學科領域,特別是人工神經網絡中,S型函數通常特指邏輯斯諦函數。
常見的S型函數
[編輯]- 一些代數函數, 例如
所有連續非負的凸形函數的積分都是S型函數,因此許多常見概率分佈的累積分佈函數會是S型函數。一個常見的例子是誤差函數,它是正態分佈的累積分佈函數。
參考文獻
[編輯]- ^ 1.0 1.1 Han, Jun; Morag, Claudio. The influence of the sigmoid function parameters on the speed of backpropagation learning. Mira, José; Sandoval, Francisco (編). From Natural to Artificial Neural Computation. Lecture Notes in Computer Science 930. 1995: 195–201. ISBN 978-3-540-86397-0. doi:10.1007/3-540-86397-3_175.
- Mitchell, Tom M. Machine Learning. WCB–McGraw–Hill. 1997. ISBN 0-07-042807-7.. In particular see "Chapter 4: Artificial Neural Networks" (in particular pp. 96–97) where Mitchell uses the word "logistic function" and the "sigmoid function" synonymously – this function he also calls the "squashing function" – and the sigmoid (aka logistic) function is used to compress the outputs of the "neurons" in multi-layer neural nets.
- Humphrys, Mark. Continuous output, the sigmoid function. [2015-02-01]. (原始內容存檔於2015-02-02). Properties of the sigmoid, including how it can shift along axes and how its domain may be transformed.