跳至內容

弱微分

維基百科,自由的百科全書

數學中,弱微分(Weak Derivative)是一個函數微分(強微分)概念的推廣,它可以作用於那些勒貝格可積(Lebesgue Integrable)的函數,而不必預設函數的可微性(事實上大部分可以弱微分的函數並不可微)。一個典型的勒貝格可積函數的空間是。在分佈中,可以定義一個更一般的微分概念。

定義

[編輯]

是一個在中的勒貝格可積的函數,稱的一個弱微分,如果

其中是任意一個連續可微的函數,並且滿足

推廣到維的情形,如果中的函數(在某個開集局部可積),並且是一個多重指標,那麼稱為次弱微分,如果

其中是一個任意給定的函數,即給定的支撐集含於無窮可微的函數。

如果的弱微分存在,一般被記為。可以證明,一個函數的弱微分在測度意義是唯一的,即如果有兩個不同的弱微分,其僅可能在一個零測集上存在差異。

例子

[編輯]

函數 並不可微,但具有以下被稱為符號函數的弱微分:

性質

[編輯]

如果兩個函數是相同函數的弱導數,那麼它們除了在一個勒貝格測度為零的集合上以外相等,也就是說,它們幾乎處處相等。如果我們考慮函數的等價類,其中兩個函數是等價的如果它們幾乎處處相等,那麼弱導數是唯一的。

此外,如果u是可微的,那麼它的弱導數與導數相同。因此弱導數是導數的推廣。更進一步,兩個函數的和與積的導數公式對弱導數也是成立的。

參見

[編輯]

參考文獻

[編輯]