跳转到内容

File:Hexahedron.jpg

页面内容不支持其他语言。
这个文件来自维基共享资源
维基百科,自由的百科全书

原始文件 (742 × 826像素,文件大小:51 KB,MIME类型:image/jpeg


摘要

描述
English: A Hexahedron (cube). A regular polyhedron.
来源 see below
作者 原上传者为英语维基百科Cyp
File:Hexahedron.svg是此文件的矢量版本。 如果此文件质量不低于原点阵图,就应该将这个JPG格式文件替换为此文件。

File:Hexahedron.jpg → File:Hexahedron.svg

更多信息请参阅Help:SVG/zh

其他语言
Alemannisch  العربية  беларуская (тарашкевіца)  български  বাংলা  català  нохчийн  čeština  dansk  Deutsch  Ελληνικά  English  British English  Esperanto  español  eesti  euskara  فارسی  suomi  français  Frysk  galego  Alemannisch  עברית  hrvatski  magyar  հայերեն  Bahasa Indonesia  Ido  italiano  日本語  ქართული  한국어  lietuvių  македонски  മലയാളം  Bahasa Melayu  norsk bokmål  Plattdüütsch  Nederlands  norsk nynorsk  norsk  occitan  polski  prūsiskan  português  português do Brasil  română  русский  sicilianu  Scots  slovenčina  slovenščina  српски / srpski  svenska  தமிழ்  ไทย  Türkçe  татарча / tatarça  українська  vèneto  Tiếng Việt  中文  中文(中国大陆)  中文(简体)  中文(繁體)  中文(马来西亚)  中文(新加坡)  中文(臺灣)  中文(臺灣)  /−
新SVG图片

许可协议

GNU head 已授权您依据自由软件基金会发行的无固定段落及封面封底文字(Invariant Sections, Front-Cover Texts, and Back-Cover Texts)的GNU自由文件许可协议1.2版或任意后续版本的条款,复制、传播和/或修改本文件。该协议的副本请见“GNU Free Documentation License”。
w:zh:知识共享
署名 相同方式共享
本文件采用知识共享署名-相同方式共享 3.0 未本地化版本许可协议授权。
您可以自由地:
  • 共享 – 复制、发行并传播本作品
  • 修改 – 改编作品
惟须遵守下列条件:
  • 署名 – 您必须对作品进行署名,提供授权条款的链接,并说明是否对原始内容进行了更改。您可以用任何合理的方式来署名,但不得以任何方式表明许可人认可您或您的使用。
  • 相同方式共享 – 如果您再混合、转换或者基于本作品进行创作,您必须以与原先许可协议相同或相兼容的许可协议分发您贡献的作品。
本许可协议标签作为GFDL许可协议更新的组成部分被添加至本文件。

Povray src code

Hexahedron, made by me using POV-Ray, see en:User:Cyp/Poly.pov for source.}}

//Picture   ***  Use flashiness=1 !!! ***
//
//    w1024  h1024  a0.3  am2
//    w512  h512  a0.3  am2
//
//Movie   ***  Use flashiness=0.25 !!! ***
//
//    kc  kff120  w256  h256  a0.3  am2
//    kc  kff60  w256  h256  a0.3  am2
//"Fast" preview
//    w128  h128
#declare notwireframe=1;
#declare withreflection=0;
#declare flashiness=0.25; //Still pictures use 1, animated should probably be about 0.25.

#macro This_shape_will_be_drawn()
   //PLATONIC SOLIDS ***********
  //tetrahedron() #declare rotation=seed(1889/*1894*/);
  //hexahedron() #declare rotation=seed(7122);
  //octahedron() #declare rotation=seed(4193);
  //dodecahedron() #declare rotation=seed(4412);
  //icosahedron() #declare rotation=seed(7719);


  //weirdahedron() #declare rotation=seed(7412);


   //ARCHIMEDIAN SOLIDS ***********
  //cuboctahedron() #declare rotation=seed(1941);
  //icosidodecahedron() #declare rotation=seed(2241);

  //truncatedtetrahedron() #declare rotation=seed(8717);
  //truncatedhexahedron() #declare rotation=seed(1345);
  //truncatedoctahedron() #declare rotation=seed(7235);
  //truncateddodecahedron() #declare rotation=seed(9374);
  //truncatedicosahedron() #declare rotation=seed(1666);

  //rhombicuboctahedron() #declare rotation=seed(6124);
  //truncatedcuboctahedron() #declare rotation=seed(1156);
  //rhombicosidodecahedron() #declare rotation=seed(8266);
  //truncatedicosidodecahedron() #declare rotation=seed(1422);

  //snubhexahedron(-1) #declare rotation=seed(7152);
  //snubhexahedron(1) #declare rotation=seed(1477);
  //snubdodecahedron(-1) #declare rotation=seed(5111);
  //snubdodecahedron(1) #declare rotation=seed(8154);


   //CATALAN SOLIDS ***********
  //rhombicdodecahedron() #declare rotation=seed(7154);
  //rhombictriacontahedron() #declare rotation=seed(1237);

  //triakistetrahedron() #declare rotation=seed(7735);
  //triakisoctahedron() #declare rotation=seed(5354);
  //tetrakishexahedron() #declare rotation=seed(1788);
  //triakisicosahedron() #declare rotation=seed(1044);
  //pentakisdodecahedron() #declare rotation=seed(6100);

  //deltoidalicositetrahedron() #declare rotation=seed(5643);
  //disdyakisdodecahedron() #declare rotation=seed(1440);
  //deltoidalhexecontahedron() #declare rotation=seed(1026);
  //disdyakistriacontahedron() #declare rotation=seed(1556);

  //pentagonalicositetrahedron(-1) #declare rotation=seed(7771);
  //pentagonalicositetrahedron(1) #declare rotation=seed(3470);
  //pentagonalhexecontahedron(-1) #declare rotation=seed(1046);
  //pentagonalhexecontahedron(1) #declare rotation=seed(1096);

   //PRISMS, ANTIPRISMS, ETC... ***********
  //rprism(5) #declare rotation=seed(6620);
  antiprism(5) #declare rotation=seed(6620);
  //bipyramid(5) #declare rotation=seed(6620);
  //trapezohedron(17) #declare rotation=seed(6620);

#end


#declare tau=(1 sqrt(5))/2;
#declare sq2=sqrt(2);
#declare sq297=sqrt(297);
#declare xi=(pow(sq297 17,1/3)-pow(sq297-17,1/3)-1)/3;
#declare sqweird=sqrt(tau-5/27);
#declare ouch=pow((tau sqweird)/2,1/3) pow((tau-sqweird)/2,1/3);
#declare alfa=ouch-1/ouch;
#declare veta=(ouch tau 1/ouch)*tau;

#macro tetrahedron()
  addpointsevensgn(<1,1,1>)
  autoface()
#end

#macro hexahedron()
  addpointssgn(<1,1,1>,<1,1,1>)
  autoface()
#end

#macro octahedron()
  addevenpermssgn(<1,0,0>,<1,0,0>)
  autoface()
#end

#macro dodecahedron()
  addpointssgn(<1,1,1>,<1,1,1>)
  addevenpermssgn(<0,1/tau,tau>,<0,1,1>)
  autoface()
#end

#macro icosahedron()
  addevenpermssgn(<0,1,tau>,<0,1,1>)
  autoface()
#end


#macro weirdahedron()
  addpermssgn(<1,2,3>,<1,1,1>)
  autoface()
#end


#macro cuboctahedron()
  addevenpermssgn(<0,1,1>,<0,1,1>)
  autoface()
#end

#macro icosidodecahedron()
  addevenpermssgn(<0,0,2*tau>,<0,0,1>)
  addevenpermssgn(<1,tau,1 tau>,<1,1,1>)
  autoface()
#end


#macro truncatedtetrahedron()
  addevenpermsevensgn(<1,1,3>)
  autoface()
#end

#macro truncatedhexahedron()
  addevenpermssgn(<sq2-1,1,1>,<1,1,1>)
  autoface()
#end

#macro truncatedoctahedron()
  addpermssgn(<0,1,2>,<0,1,1>)
  autoface()
#end

#macro truncateddodecahedron()
  addevenpermssgn(<0,1/tau,2 tau>,<0,1,1>)
  addevenpermssgn(<1/tau,tau,2*tau>,<1,1,1>)
  addevenpermssgn(<tau,2,1 tau>,<1,1,1>)
  autoface()
#end

#macro truncatedicosahedron()
  addevenpermssgn(<0,1,3*tau>,<0,1,1>)
  addevenpermssgn(<2,1 2*tau,tau>,<1,1,1>)
  addevenpermssgn(<1,2 tau,2*tau>,<1,1,1>)
  autoface()
#end


#macro rhombicuboctahedron()
  addevenpermssgn(<1 sq2,1,1>,<1,1,1>)
  autoface()
#end

#macro truncatedcuboctahedron()
  addpermssgn(<1,1 sq2,1 sq2*2>,<1,1,1>)
  autoface()
#end

#macro rhombicosidodecahedron()
  addevenpermssgn(<1,1,1 2*tau>,<1,1,1>)
  addevenpermssgn(<tau,2*tau,1 tau>,<1,1,1>)
  addevenpermssgn(<2 tau,0,1 tau>,<1,0,1>)
  autoface()
#end

#macro truncatedicosidodecahedron()
  addevenpermssgn(<1/tau,1/tau,3 tau>,<1,1,1>)
  addevenpermssgn(<2/tau,tau,1 2*tau>,<1,1,1>)
  addevenpermssgn(<1/tau,1 tau,3*tau-1>,<1,1,1>)
  addevenpermssgn(<2*tau-1,2,2 tau>,<1,1,1>)
  addevenpermssgn(<tau,3,2*tau>,<1,1,1>)
  autoface()
#end


#macro snubhexahedron(s)
  addpermsaltsgn(<1,1/xi,xi>*s)
  autoface()
#end

#macro snubdodecahedron(s)
  addevenpermsevensgn(<2*alfa,2,2*veta>*s)
  addevenpermsevensgn(<alfa veta/tau tau,-alfa*tau veta 1/tau,alfa/tau veta*tau-1>*s)
  addevenpermsevensgn(<-alfa/tau veta*tau 1,-alfa veta/tau-tau,alfa*tau veta-1/tau>*s)
  addevenpermsevensgn(<-alfa/tau veta*tau-1,alfa-veta/tau-tau,alfa*tau veta 1/tau>*s)
  addevenpermsevensgn(<alfa veta/tau-tau,alfa*tau-veta 1/tau,alfa/tau veta*tau 1>*s)
  autoface()
#end

#macro rhombicdodecahedron()
  cuboctahedron() dual()
#end

#macro rhombictriacontahedron()
  icosidodecahedron() dual()
#end

#macro triakistetrahedron()
  truncatedtetrahedron() dual()
#end

#macro triakisoctahedron()
  truncatedhexahedron() dual()
#end

#macro tetrakishexahedron()
  truncatedoctahedron() dual()
#end

#macro triakisicosahedron()
  truncateddodecahedron() dual()
#end

#macro pentakisdodecahedron()
  truncatedicosahedron() dual()
#end

#macro deltoidalicositetrahedron()
  rhombicuboctahedron() dual()
#end

#macro disdyakisdodecahedron()
  truncatedcuboctahedron() dual()
#end

#macro deltoidalhexecontahedron()
  rhombicosidodecahedron() dual()
#end

#macro disdyakistriacontahedron()
  truncatedicosidodecahedron() dual()
#end

#macro pentagonalicositetrahedron(s)
  snubhexahedron(s) dual()
#end

#macro pentagonalhexecontahedron(s)
  snubdodecahedron(s) dual()
#end

#macro rprism(n)
  #local a=sqrt((1-cos(2*pi/n))/2);
  #local b=0; #while(b<n-.5)
    addpointssgn(<sin(2*pi*b/n),cos(2*pi*b/n),a>,<0,0,1>)
  #local b=b 1; #end
  autoface()
#end

#macro antiprism(n)
  #local a=sqrt((cos(pi/n)-cos(2*pi/n))/2);
  #local b=0; #while(b<2*n-.5)
    addpoint(<sin(pi*b/n),cos(pi*b/n),a>)
  #local a=-a; #local b=b 1; #end
  autoface()
#end

#macro bipyramid(n)
  rprism(n) dual()
#end

#macro trapezohedron(n)
  antiprism(n) dual()
#end


#declare points=array[1000];
#declare npoints=0;
#declare faces=array[1000];
#declare nfaces=0;
#macro addpoint(a)
  #declare points[npoints]=a;
  #declare npoints=npoints 1;
#end
#macro addevenperms(a)
  addpoint(a)
  addpoint(<a.y,a.z,a.x>)
  addpoint(<a.z,a.x,a.y>)
#end
#macro addperms(a)
  addevenperms(a)
  addevenperms(<a.x,a.z,a.y>)
#end
#macro addpointssgn(a,s)
  addpoint(a)
  #if(s.x) addpointssgn(a*<-1,1,1>,s*<0,1,1>) #end
  #if(s.y) addpointssgn(a*<1,-1,1>,s*<0,0,1>) #end
  #if(s.z) addpoint(a*<1,1,-1>) #end
#end
#macro addevenpermssgn(a,s)
  addpointssgn(a,s)
  addpointssgn(<a.y,a.z,a.x>,<s.y,s.z,s.x>)
  addpointssgn(<a.z,a.x,a.y>,<s.z,s.x,s.y>)
#end
#macro addpermssgn(a,s)
  addevenpermssgn(a,s)
  addevenpermssgn(<a.x,a.z,a.y>,<s.x,s.z,s.y>)
#end
#macro addpointsevensgn(a)
  addpoint(a)
  addpoint(a*<-1,-1,1>)
  addpoint(a*<-1,1,-1>)
  addpoint(a*<1,-1,-1>)
#end
#macro addevenpermsevensgn(a)
  addevenperms(a)
  addevenperms(a*<-1,-1,1>)
  addevenperms(a*<-1,1,-1>)
  addevenperms(a*<1,-1,-1>)
#end
#macro addpermsaltsgn(a)
  addevenpermsevensgn(a)
  addevenpermsevensgn(<a.x,a.z,-a.y>)
#end
/*#macro addevenpermssgn(a,s) //Calls addevenperms with, for each 1 in s, a.{x,y,z} replaced with { ,-}a.{x,y,z}
  addevenperms(a)
  #if(s.x) addevenpermssgn(a*<-1,1,1>,s*<0,1,1>) #end
  #if(s.y) addevenpermssgn(a*<1,-1,1>,s*<0,0,1>) #end
  #if(s.z) addevenperms(a*<1,1,-1>) #end
#end*/
#macro addface(d,l)
  #local a=vnormalize(d)/l; 
  #local f=1;
  #local n=0; #while(n<nfaces-.5)
    #if(vlength(faces[n]-a)<0.00001) #local f=0; #end
  #local n=n 1; #end
  #if(f)
    #declare faces[nfaces]=a;
    #declare nfaces=nfaces 1;
  #end
#end
#macro dual()
  #declare temp=faces;
  #declare faces=points;
  #declare points=temp; 
  #declare temp=nfaces;
  #declare nfaces=npoints;
  #declare npoints=temp; 
#end

#macro autoface() //WARNING: ONLY WORKS IF ALL EDGES HAVE EQUAL LENGTH
  //Find edge length 
  #declare elength=1000;
  #local a=0; #while(a<npoints-.5) #local b=0; #while(b<npoints-.5)
    #local c=vlength(points[a]-points[b]); #if(c>0.00001 & c<elength) #local elength=c; #end
  #local b=b 1; #end #local a=a 1; #end

  //Find planes
  //#macro planes()
  #local a=0; #while(a<npoints-.5)
    #local b=a 1; #while(b<npoints-.5)
      #if(vlength(points[a]-points[b])<elength 0.00001) #local c=b 1; #while(c<npoints-.5)
        #if(vlength(points[a]-points[c])<elength 0.00001)
          #local n=vnormalize(vcross(points[b]-points[a],points[c]-points[a]));
          #local d=vdot(n,points[a]);
          #if(d<0) #local n=-n; #local d=-d; #end
          #local f=1;
          #local e=0; #while(e<npoints-.5)
            #if(vdot(n, points[e])>d 0.00001) #local f=0; #end
          #local e=e 1; #end
          #if(f)
            #declare ld=d;
            addface(n,d) //plane { n, d }
          #end
        #end
      #local c=c 1; #end #end
    #local b=b 1; #end
  #local a=a 1; #end
#end

This_shape_will_be_drawn()

//Random rotations are (hopefully) equally distributed...
#declare rot1=rand(rotation)*pi*2;
#declare rot2=acos(1-2*rand(rotation));
#declare rot3=(rand(rotation) clock)*pi*2;
#macro dorot()
  rotate rot1*180/pi*y
  rotate rot2*180/pi*x
  rotate rot3*180/pi*y
#end

//Scale shape to fit in unit sphere
#local b=0;
#local a=0; #while(a<npoints-.5)
  #local c=vlength(points[a]); #if(c>b) #local b=c; #end
#local a=a 1; #end
#local a=0; #while(a<npoints-.5)
  #local points[a]=points[a]/b;
#local a=a 1; #end
#local a=0; #while(a<nfaces-.5)
  #local faces[a]=faces[a]*b;
#local a=a 1; #end

//Draw edges
#macro addp(a)
  #declare p[np]=a;
  #declare np=np 1;
#end
#local a=0; #while(a<nfaces-.5)
  #declare p=array[20];
  #declare np=0;
  #local b=0; #while(b<npoints-.5)
    #if(vdot(faces[a],points[b])>1-0.00001) addp(b) #end
  #local b=b 1; #end
  #local c=0; #while(c<np-.5)
    #local d=0; #while(d<np-.5) #if(p[c]<p[d]-.5)
      #local f=1;
      #local e=0; #while(e<np-.5) #if(e!=c & e!=d & vdot(vcross(points[p[c]],points[p[d]]),points[p[e]])<0)
        #local f=0;
      #end #local e=e 1; #end
      #if(f)
        object {
          cylinder { points[p[c]], points[p[d]], .01 dorot() }
          pigment { colour <.3,.3,.3> }
          finish { ambient 0 diffuse 1 phong 1 }
        }
      #end #end        
    #local d=d 1; #end
  #local c=c 1; #end
#local a=a 1; #end
/*#local a=0; #while(a<npoints-.5)
  #local b=a 1; #while(b<npoints-.5)
    #if(vlength(points[a]-points[b])<elength 0.00001)
      object {
        cylinder { points[a], points[b], .01 dorot() }
        pigment { colour <.3,.3,.3> }
        finish { ambient 0 diffuse 1 phong 1 }
      }
    #end
  #local b=b 1; #end
#local a=a 1; #end*/

//Draw points
#local a=0; #while(a<npoints-.5)
  object {
    sphere { points[a], .01 dorot() }
    pigment { colour <.3,.3,.3> }
    finish { ambient 0 diffuse 1 phong 1 }
  }
#local a=a 1; #end

#if(notwireframe)
//Draw planes
object {
  intersection {
    #local a=0; #while(a<nfaces-.5)
      plane { faces[a], 1/vlength(faces[a]) }
    #local a=a 1; #end
    //planes()
    //sphere { <0,0,0>, 1 }
    //sphere { <0,0,0>, ld .01 inverse }
    dorot()
  }
  pigment { colour rgbt <.8,.8,.8,.4> }
  finish { ambient 0 diffuse 1 phong flashiness #if(withreflection) reflection { .2 } #end }
  //interior { ior 1.5 }
  photons {
    target on
    refraction on
    reflection on
    collect on
  }
}
#end

//  CCC Y Y PP
//  C   Y Y P P
//  C    Y  PP
//  C    Y  P
//  CCC  Y  P

#local a=0;
#while(a<11.0001)
  light_source { <4*sin(a*pi*2/11), 5*cos(a*pi*6/11), -4*cos(a*pi*2/11)> colour (1 <sin(a*pi*2/11),sin(a*pi*2/11 pi*2/3),sin(a*pi*2/11 pi*4/3)>)*2/11 }
  #local a=a 1;
#end

background { color <1,1,1> }

camera {
  perspective
  location <0,0,0>
  direction <0,0,1>
  right x/2
  up y/2
  sky <0,1,0>
  location <0,0,-4.8>
  look_at <0,0,0>
}

global_settings {
  max_trace_level 40
  photons {
    count 200000
    autostop 0
  }
}

说明

添加一行文字以描述该文件所表现的内容
Image of Cube

此文件中描述的项目

描绘内容

文件历史

点击某个日期/时间查看对应时刻的文件。

日期/时间缩⁠略⁠图大小用户备注
当前2005年1月6日 (四) 20:282005年1月6日 (四) 20:28版本的缩略图742 × 826(51 KB)Kjell AndréA Hexahedron (cube). A regular polyhedron.

全域文件用途

以下其他wiki使用此文件:

查看此文件的更多全域用途