共振 (化學)
共振論是化學中表示分子結構的一種方法,是價鍵理論的重要組成部分。該方法認為,對於結構無法用一個經典結構式來表達的分子、離子或自由基,可以通過若干經典結構式的共振來表達其結構。共振中的結構並不存在,真實粒子也並非這些共振結構的混合物或是平衡體系,只是價鍵理論中無法用單一結構式來準確表達物質結構,必須要藉助共振的思想。
簡介
編輯單一路易斯結構中,共價鍵的鍵級只能是整數,常與實驗數據或量子力學計算所得的結果不符。共振論認為,如果一個物質存在兩種以上滿足共振要求的路易斯結構,這類物質只能用共振式來書寫,而且它們實際上綜合具有這些結構的特點。每一個共振中的結構稱為共振結構,而這樣的物質看作由共振結構「雜化」而成,稱為雜化體。共振結構之間以雙向箭頭連接。根據情況不同,每一個共振結構對雜化體的貢獻程度不同。
以右圖中的苯為例。根據價鍵理論,可以寫出兩種不同的苯分子結構。但是實驗表明,苯分子中的C-C鍵長相等,處於單鍵和雙鍵之間,與單一的路易斯結構相矛盾。為了解釋這個現象,共振論認為苯實際上是這兩種結構的雜化體,兩種共振結構貢獻相等,因此苯的六個碳完全等同。
需要注意的是,每個共振結構實質上並不存在,雜化體具有單一特定的結構,也並不是共振結構的混合物或平衡體系。只是任何一個路易斯結構都無法準確地表達物質的結構,只有用共振結構雜化的思想來表達才更加確切。因此共振式與互變異構是截然不同的兩個概念,互變異構涉及原子位置的改變,而共振式則不然。
以向量作比喻
編輯共振式中各共振結構的關係可以與正交坐標系中的向量坐標類比。假設向量r可以寫作xi yj zk(x, y, z是分向量,i, j, k為坐標軸),那麼r不是i、j或k中的任意一個,而是它們的特定組合,雜化體也是如此。三個並不存在的共振結構x、y和z,都對雜化體有貢獻,而且貢獻不同,它們的引入,可以在很大程度上方便理解分析雜化體的結構及性質。
本質
編輯除了從路易斯結構圖上理解物質結構外,共振論還有利於從數學層面上理解價鍵理論(VB)。當某物質的性質無法用一個價鍵結構來描述時,即無法以激發、雜化和成鍵的過程解釋,那麼共振論的概念便被引入,以便於理解結構。
再次以苯為例。價鍵理論中,先寫出苯分子兩種可能的路易斯結構,然後這兩種結構線性組合,形成的波函數中含有兩種結構各一半的貢獻。然而,大多數情況下共振結構的貢獻並不相等,這時可通過變分最優化先求得波函數的最低能量,作為最佳近似值得到貢獻的係數,再由此近似估計分子的真實結構。
在更複雜的分子軌道理論中,共振通常是π軌道中電子離域的同義詞。比如苯分子中,分子軌道示意圖表明6個π電子離域在6個碳原子上,碳-碳鍵鍵級超過單鍵,整個分子以正六邊形環外加中心的圓來表示更加妥當。一般教學中,常混合價鍵理論和分子軌道理論的思想,認為C-C之間不只存在σ鍵,而且還包括π電子的離域。
共振能
編輯雜化體的能量總是低於各共振結構,常用共振能的概念來表示該降低值。它被定義為雜化體能量低於最穩定共振結構能量的數值,常與另一個概念離域能混用。[1]電子的離域降低了軌道能,增加了分子的穩定性,常會造成分子的芳香性,如苯。
共振能隨着共振結構數的增多而增大,尤其是存在等價共振結構時(能量相等)。可由量子化學計算、熱化學方法或分子的氫化熱來估計共振能。例如,氫化苯的一個雙鍵約需120kJ/mol的能量,乘以3得到苯的完全氫化需要的能量,大概為360kJ/mol。實驗測得苯的氫化熱只有210kJ/mol,因此,共振能便是剩下的150kJ/mol。
共振能可用於計算鮑林標度下的電負性。
共振式
編輯書寫共振式時必須遵守以下兩點:
- 所有的共振式必須符合路易斯結構式。
- 同一分子的共振式中原子排列順序、總電子數和電荷數必須相同。
不同共振結構的穩定性可通過以下規則判斷:[2]
- 共振結構的電荷越分散越穩定;
- 滿殼層的結構比價電子層不滿的結構穩定;
- 負電荷處在電負性強原子上的共振結構更穩定,正電荷處在電負性弱原子上的共振結構更穩定;
- 具有不滿殼層且帶電荷原子的共振結構不穩定;
- 共振結構含有的共價鍵數目越多越穩定;
- 正負電荷分離越遠越不穩定,同號電荷越近越不穩定;
- 鍵長、鍵角有改變的共振結構不穩定。
共振結構對雜化體的貢獻中,越穩定的共振結構對雜化體貢獻越大,因此真實分子的性質很大程度上依賴於貢獻大的結構。此外,由等價共振結構構成的體系更加穩定,如烯丙基正離子(見下)。
歷史
編輯共振的概念首先由萊納斯·鮑林在1928年提出,「共振」一詞(Resonance)來源於用量子力學法處理H2時,產生的兩個耦合振子的經典系統。30年代時,英果爾德表示,用「中介」來描述共振論更加恰當。德國化學家阿恩特(阿恩特-艾斯特爾特合成的發現者之一)首先引入共振式中的雙向箭頭。
40年代起,由於意識形態的不同,蘇聯科學界開始了一場對「資產階級科學」的批判。[3]當時批判的主要對象有:生物學中摩爾根的基因論、物理學中的「量子力學唯心理論」、化學中鮑林的共振論及工程學中維納的控制論等,批判的高潮階段為1951年蘇聯科學院化學部的「有機化學中化學結構理論問題討論會」。當時的中國緊隨其後,陸續開展肅清資產階級科學的活動,化學家唐敖慶也撰寫名為《肅清化學構造理論中的唯心主義》的文章表明支持。[4]當時認為,鮑林提出的共振論是唯心的,而且人們必須「向化學構造理論中的唯心論、反動的、偽科學的概念所進行的不妥協的鬥爭」,徹底清除資產階級學者的唯心主義思想殘留。這些批判活動直到1958年才有所停止。[5]
共振論中的「共振」與物理學中傳統的共振概念有很大差異,曾有人建議將共振改為「離域」,[6]相應的共振能則變為「離域能」,共振結構變為「極限結構」或「貢獻結構」。
例子
編輯畫簡單分子的極限結構時,可以遵循以下的方法:
- 數出總價電子數
- 畫出鍵連順序,先假設所有鍵都為單鍵
- 依照八隅體規則為周邊原子補充電子
- 將總價電子數中剩下的電子分配到中心原子上,若不滿足八隅律,則:
- 在一個鍵中加入多重鍵(雙鍵、叄鍵),直至滿足八隅律——畫出一個共振結構
- 將多重鍵應用到其他鍵中,畫出其他共振結構
活性中間體
編輯碳正離子和自由基等活性中間體常會因為電子離域,而生成意料之外的產物。例如在烯丙基重排中,當1,3-丁二烯與等物質的量的HCl混合時,除了生成應當得到的3-氯-1-丁烯外,還檢測到了1-氯-2-丁烯。進一步的同位素標記實驗表明,反應中發生了雙鍵從1,2-位向2,3-位的轉移。連同超強酸溶液中的NMR數據,可以得出,中間體烯丙基碳正離子與經典的碳正離子不同,必定含有高度離域的結構。該離子的共振式見上圖。
不穩定分子的離域程度通常較大,共軛雙烯的激發態由於共軛更加穩定,也因此用作有機染料。
不含π電子的電子離域,即超共軛,存在於非經典的降樟基正離子、乙硼烷和甲鎓離子(CH5 )中,也稱作三中心兩電子鍵。它們的共振式涉及σ電子的重排。
不足
編輯雖然共振論為價鍵理論補充了內容,對一些實驗事實做出了很好的解釋,但對於立體化學以及反應中的激發態等問題,共振論仍顯得無能為力,在某些方面作出的預測甚至是錯誤的。由於其任意性,在選擇共振結構時,許多激發態的結構常因不符合規定而被忽略掉,在某些情況下,這是錯誤的。此外,也可以由「共振結構越多分子越穩定」的規定引出一些與事實不符的結論。
參見
編輯參考資料
編輯- ^ Robert Morrison, Robert Boyd. Chapter 10. Organic Chemistry Fifth Edition. Prentice Hall of India. 1989: Page 372. ISBN 0-87692-560-3.
The resonance hybrid is more stable than any of the contributing structures.
- ^ 邢其毅等。《基礎有機化學》第三版上冊。北京:高等教育出版社,2005年。ISBN 7-04-016637-2
- ^ 1952年的《科学通报》:思想改造、学习苏联与科学批判. 《二十一世紀》網絡版第三十四期. 2005年1月31日 [2008年5月29日]. (原始內容存檔於2010年3月23日) (中文(繁體)).
- ^ 唐敖慶。《肅清化學構造理論中的唯心主義》,《科學通報》,1952,(2):104-105。
- ^ 伪科学之争 妖魔化何祚庥院士的背后(图). 北京科技報. 2005年10月12日 [2008年5月29日]. (原始內容存檔於2006年5月6日) (中文(中國大陸)).
- ^ If It's Resonance, What Is Resonating? Kerber, Robert C. . J. Chem. Educ. 2006 83 223. Abstract (頁面存檔備份,存於互聯網檔案館)