数学中,函数的值域(英語:Range)是由定义域中一切元素所能產生的所有函數值集合。有时候也称为函数的

给定函数,集合被称为是值域,记为。值域不应跟陪域相混淆。一般来说,值域只是陪域的一个子集

例子

编辑

假设函数 为定义在实数上的函数:

 

定义为

 

 的陪域为 ,但明顯地 不會取到负数值,因此,事实上值域只是非负实数集合 ,即区间 

 

求法

编辑

基本方法

编辑

初等函数的值域求法一般为:

  1. 观察法
  2. 不等式法
  3. 反函数法
  4. 复合函数法
  5. 配方法
  6. 判别式法
  7. 图像求值

观察法

编辑

例如: 

 

 

所以值域为 

不等式法

编辑

反函数法

编辑

先求得所要计算的函数的反函数,则反函数的定义域即为原函数的值域。

例如: 

它的反函数为 

反函数的定义域为: 

则原函数 的值域为: 

复合函数法

编辑

配方法

编辑

判别式法

编辑

图像求值

编辑

画出連續函数的图像,则函数图像纵轴的最小值和最大值(若有)组成的区间即为函数的值域。

相关条目

编辑