Pages that link to "Q41957179"
Jump to navigation
Jump to search
The following pages link to Using growing self-organising maps to improve the binning process in environmental whole-genome shotgun sequencing (Q41957179):
Displaying 20 items.
- A primer on metagenomics (Q21145346) (← links)
- Evaluation of short read metagenomic assembly (Q27496600) (← links)
- Cnidaria: fast, reference-free clustering of raw and assembled genome and transcriptome NGS data (Q30000040) (← links)
- Conformational and functional analysis of molecular dynamics trajectories by self-organising maps (Q30155549) (← links)
- Signal processing for metagenomics: extracting information from the soup (Q30481642) (← links)
- Practical application of self-organizing maps to interrelate biodiversity and functional data in NGS-based metagenomics (Q30500792) (← links)
- Unsupervised statistical clustering of environmental shotgun sequences. (Q30874745) (← links)
- Metagenomics: tools and insights for analyzing next-generation sequencing data derived from biodiversity studies (Q30953199) (← links)
- Metagenomics approaches in systems microbiology (Q33389336) (← links)
- Metagenomic sequencing of an in vitro-simulated microbial community (Q33564344) (← links)
- RAIphy: Phylogenetic classification of metagenomics samples using iterative refinement of relative abundance index profiles (Q33807870) (← links)
- Joint analysis of multiple metagenomic samples (Q34167839) (← links)
- Current opportunities and challenges in microbial metagenome analysis--a bioinformatic perspective (Q34410918) (← links)
- A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks. (Q34543226) (← links)
- Clustering metagenomic sequences with interpolated Markov models (Q34992728) (← links)
- Reconstructing the genomic content of microbiome taxa through shotgun metagenomic deconvolution (Q35022283) (← links)
- Binning sequences using very sparse labels within a metagenome (Q38445831) (← links)
- Development of self-compressing BLSOM for comprehensive analysis of big sequence data (Q40399774) (← links)
- Multistrategy Self-Organizing Map Learning for Classification Problems (Q41857358) (← links)
- Viral population analysis of the taiga tick, Ixodes persulcatus, by using Batch Learning Self-Organizing Maps and BLAST search (Q64226700) (← links)