NOUS41 KWBC 241620 PNSWSH

Service Change Notice 24-09 National Weather Service Headquarters Silver Spring MD 1120 AM EST Wed Jan 24 2024

To: Subscribers:

-NOAA Weather Wire Service

-Emergency Managers Weather Information Network

-NOAAPort

Other NWS Partners, Users and Employees

From: Terrance J. Clark, Director WSR-88D Radar Operations Center

Subject: Change to NEXRAD Level III Product Dissemination on or around March 4, 2024

WSR-88D Build 22.1 includes adding supplemental low elevation angles at additional sites and consequently the following change to Level III product dissemination will occur as sites install this software release starting around March 4, 2024. This includes a supplemental low elevation angle at the relocated and renamed New Orleans, LA WSR-88D radar (i.e., KLIX/Slidell will become KHDC/Hammond around March 31, 2024 per Public Information Statement (PNS) 23-58).

Table 1 contains the products and World Meteorological Organization (WMO) Headings that are disseminated from WSR-88D sites that scan at elevation angles below 0.5 degrees.

Table 1: Radar Product WMO Headings and RPCCDS FTP Directory Names

WMO Hea	_		Product Description and Elevation	RPCCDS FTP
TTAAII	NNN			Directory
SDUS6i	NXQ I	Base	Reflectivity .54nm X 1deg 94/DR -0.2DEG	DS.p94rx
			Reflectivity .54nm X 1deg 94/DR 0.0-0.2DEG	DS.p94ry
SDUS6i	NZQ I	Base	Reflectivity .54nm X 1deg 94/DR 0.3-0.4DEG	DS.p94rz
SDUS5i	NXB I	Base	Reflectivity .13nm X .5deg 153/SDR -0.2DEG	n/a
SDUS5i	NYB I	Base	Reflectivity .13nm X .5deg 153/SDR 0.0-0.2DE	G n/a
SDUS5i	NZB I	Base	Reflectivity .13nm X .5deg 153/SDR 0.3-0.4DE	G n/a
SDUS6i	NXU I	Base	Velocity .13nm X 1deg 99/DV -0.2DEG	DS.p99vx
SDUS6i	NYU I	Base	Velocity .13nm X 1deg 99/DV 0.0-0.2DEG	DS.p99vy
SDUS6i	NZU I	Base	Velocity .13nm X 1deg 99/DV 0.3-0.4DEG	DS.p99vz
SDUS5i	NXG I	Base	Velocity .13nm X .5deg 154/SDV -0.2DEG	n/a
SDUS5i	NYG I	Base	Velocity .13nm X .5deg 154/SDV 0.0-0.2DEG	n/a
SDUS5i	NZG I	Base	Velocity .13nm X .5deg 154/SDV 0.3-0.4DEG	n/a
SDUS6i	NXF I	Power	Removed Control 113/PRC -0.2DEG	DS.113fx
SDUS6i	NYF I	Power	Removed Control 113/PRC 0.0-0.2DEG	DS.113fy
SDUS6i	NZF I	Power	Removed Control 113/PRC 0.3-0.4DEG	DS.113fz
SDUS8i	NXX I	Diffe	erential Reflectivity 159/DZD -0.2DEG	DS.159xx

SDUS8i	NYX	Differential Reflectivity 159/DZD 0.0-0.2DEG	DS.159xy
SDUS8i	NZX	Differential Reflectivity 159/DZD 0.3-0.4DEG	DS.159xz
SDUS8i	NXC	Correlation Coefficient 161/DCC -0.2DEG	DS.161cx
SDUS8i	NYC	Correlation Coefficient 161/DCC 0.0-0.2DEG	DS.161cy
SDUS8i	NZC	Correlation Coefficient 161/DCC 0.3-0.4DEG	DS.161cz
SDUS8i	NXK	Specific Differential Phase 163/DKD -0.2DEG	DS.163kx
SDUS8i	NYK	Specific Differential Phase 163/DKD 0.0-0.2DEG	DS.163ky
SDUS8i	NZK	Specific Differential Phase 163/DKD 0.3-0.4DEG	DS.163kz
SDUS8i	NXH	Hydrometeor Classification165/DHC -0.2DEG	DS.165hx
SDUS8i	NYH	Hydrometeor Classification165/DHC 0.0-0.2DEG	DS.165hy
SDUS8i	NZH	Hydrometeor Classification165/DHC 0.3-0.4DEG	DS.165hz
SDUS8i	NXM	Melting Layer 166/ML -0.2DEG	DS.166mx
SDUS8i	NYM	Melting Layer 166/ML 0.0-0.2DEG	DS.166my
SDUS8i	NZM	Melting Layer 166/ML 0.3-0.4DEG	DS.166mz

Note: The abbreviation DEG is used to denote degrees elevation angle, while deg denotes degrees azimuth angle resolution.

The TTAAII portion of the WMO Heading is the same as the $0.5~\rm DEG$ product with the same descriptive name. The NNN part of the WMO heading for WSR-88D elevation-based products all follow a scheme where the middle character is 0 for the $0.5~\rm degree$ elevation product and it increases numerically or alphabetically with increasing elevation angle. To accommodate the possibility of a future scan strategy containing more than one elevation angle below $0.5~\rm degrees$, the middle character of NNN product ID is X, Y, or Z. That is, X for elevation angles $-0.1~\rm and$ below, Y for $0.0~\rm through$ $0.2~\rm deg$, and Z for elevation angles $0.3~\rm and$ $0.4~\rm deg$.

These products will be available via NOAAPort and from the RPCCDS FTP site https://tgftp.nws.noaa.gov/SL.us008001/DF.of/DC.radar/ at the indicated directory names. Exceptions are that super-res reflectivity and velocity products (153/SDR, 154/SDV) are only disseminated on NOAAPort and SDUS6i products are only disseminated on RPCCDS.

Table 2 contains the list of lower elevation WSR-88D sites added with Build 22.1, WMO Headings indicating the originating area (I) and site (CCCC), the elevation angle and middle character of the NNN Advanced Weather Interactive Processing System (AWIPS) ID group, and the year that the lower elevation angle scan will begin.

Table 2: Originating and Radar Site WMO Headings of Lower Elevations

WMO Heading TTAAII CCCC	AWIPS ID NNNNXX	Site Location City and State	Elevation Angle/N	Begin Year
SDUSi4 KBMX	nnnBMX	Birmingham, AL	0.4/Z	2024
SDUSi4 KMOB	nnnMOB	Mobile, AL	0.2/Y	2024
SDUSi4 KLIX	nnnHDC	Hammond, LA	0.3/Z	2024

Low elevation product dissemination began in 2020 at other sites. See Service Change Notice (SCN) 20-42 and SCN 23-96 for information on those sites.

Since WSR-88D Build 19.0, sites have the option to disable/enable scanning at elevation angles below 0.5 degrees. Base Tilt is the name given to VCPs that include the additional lower elevation cut. When Base Tilt is enabled, the additional lower elevation cut is scanned, and the General Status Message will have Bit 7 set in the Volume Coverage Pattern (VCP) Supplemental Data field. Depending on the Base Tilt status, the 0.5 degree or the lower elevation angle scan will be repeated when SAILS or MRLE are enabled. A description of SAILS and MRLE is available at:

https://www.roc.noaa.gov/WSR88D/NewRadarTechnology/NewTechDefault.aspx

Please direct comments or report impacts from this change to:

Mike Istok Radar Operations Center michael.istok@noaa.gov

National Service Change Notices are online at:

https://www.weather.gov/notification/

NNNN