

Computational Methods to Vocalize Arabic Texts

Hani Safadi
1
, Dr. Oumayma Dakkak

2
, Dr. Nada Ghneim

2

hanisaf@gmail.com, odakkak@hiast.edu.sy, n_ghneim@netcourrier.com

Faculty of Informatics Engineering, University of Damascus, SYRIA1

Higher Intuition of Applied Science and Technology, Damascus, SYRIA2

Abstract

Arabic Language has two kinds of vowels: Long vowels

which are written as normal letters; and short vowels

which are written as punctuation marks, above or

below letters. Those short vowels are normally omitted

in Arabic texts because the reader can fill them and

guess the meaning based on his knowledge of the

language, and the context in which the words are.

However, with the widespread usage of computers in

linguistics application; Arabic texts need to be supplied

with short vowels in order to be analyzed. Search

engines, text to speech engines, and text mining tools

are just some examples of applications that need

Arabic texts to be vocalized before being processed.

In this paper, we present a new method to supply those

vocals. The approach emphasizes on unsupervised

machine methods, because public Arabic corpora are

not available. Arabic rich morphology and diverse

orthography present serious challenges for this

approach. An algorithm is developed and a system is

implemented in Java.

The techniques presented in this dissertation can be

applied to similar Semitic or other languages that have

the same problem.

1. Introduction

There are two types of vowels in Arabic: long

vowels /A/, /w/, /y/ (We are using here Buckwalter

Arabic trasliration table [6] see Appendix A) (although

/w/, /y/ can be used as consonant sometimes), and short

vowels /a/ (Fatha), /u/ (Damma), /I/ (Kasra). These

short vowels are part of the word and are written as

additional marks above or below letters. In addition to

the short vowels, there are other marks (F Tanween-

Fateh pronounced /an/, N Tanween-Damm pronounced

/un/ or /on/, K Tanween-Kasir, pronounced /in/ or /en/,

o Sukun which means that the consonant is not

followed by a vowel), ~ Shadda which means a

duplication of the consonant). All these marks are

usually not written because Arabic reader can guess

them, based on his knowledge of the language and on

the context. They are only put when very necessary, in

cases where the word is so ambiguous without them,

and cannot be distinguished from other words. Even

with such a situation, only one or two discriminating

letters are vocalized.

For non-Arabic speakers this problem might seem too

abstract. To illustrate it we will use a hypothetical

version of English, we will call it AEng. In AEng, of

the five vowels which are /a/, /e/, /i/, /o/ and /u/, we

only write the /i/ and /u/ as normal letters, while we

omit the /a/, /o/ and /e/.

Now try to read the following sentence in this language:

"If yu cn rd this thn w cn omt vwls"

If you figured out the meaning of this sentence then you

are convinced that some vowels can be omitted. If not,

you will adapt to this as you use AEng is your daily

life!

The original sentence in English is:

"If you can read this then, we can omit vowels"

It is a little bit similar to chatting language.

Note that this is only an example, and does not need to

be fully representative.

From this example, we see how ambiguous a sentence

is without the short vowels (at least for computers). For

example, the word Elm in Arabic could be:

Eilom Science

Ealam Flag

Ealim to know

There are also other possibilities….

In AEng we have the word bg that could be read or beg

or bag.

This example makes it clear that we need short vowels

in order to understand the text in computer.

Each letter has one or two short vowels associated with

it.

The short vowels on all characters, but the last one,

differentiate the word from other words. The short

vowel on the last letter, however, determines the

syntactic position of the word in the sentence (Like

Nominative, Accusative, and Dative in German).

Although they add other information to the word, this

study will not deal with them. In fact, putting the last

vowels of the words needs deeper syntactic analysis,

and the information they add are not so essential.

For example:

EilomF

EilomN

EilomK

2. Previous Attempts

Despite the abundance of computational Arabic

studies, Arabic Vocalization is not enough studied.

Sakhr [1] has a commercial system for Arabic

vocalization. Unfortunately, the system is totally closed

and no information about it is known.

Y. Gal [2] uses a hidden Markov model (HMM) trained

on vocalized Arabic texts. It uses the Holy Quranic text

as a training corpus. It shows results of 85% correct

vocalization when used with text from the same corpus.

R. Nelken and S. Shieber [3] use weighted finite-state

transducers trained on LDC corpus [4] of M. Maamouri

et al. The reported results show 93% of correct

vocalization.

3. Our Methodology

While the past two approaches provide useful

attempts to solve the problem; both of them have the

same drawback: They tackle the problem with a top-

down approach, building a model and training it with a

corpus, although [3] did some morphological analysis.

The problem with this approach is that it is highly

dependent on the corpus. For example, Quranic texts

used in [2] are not good representative of modern

Arabic. And newspaper archives in LDC [4] used in [3]

do not cover all the topics in the language.

Our work uses a bottom-up approach, where we do a

complete linguistic analysis of Arabic texts.

Our systems works in four stages:

1. Parsing the text.

2. Analyzing the text morphologically.

3. Part of speech tagging of the text.

4. Applying linguistic heuristics rules.

We will explain each of these steps, and show how it

participates in the vocalization process.

1. Parsing: In this step, the text is spitted to

phrases and each phrase is splitted to words.

The process is simple; it uses the regular

expressions to parse the text.

2. Morphological Analysis: In this step, each

word is considered alone and passed to the

morphological analyzer. The morphological

analyzer provides for each word all the vocal

possibilities which can be added to the word to

generate words in the language. This stage

gives also the part of speech tag of each

possibility.

We used Buckwalter Arabic morphological

analyzer [5] that uses a concatinative

methodology to analyze words. It considers

each word as a combination of prefix, stem,

and suffix. It has a dictionary of prefixes,

stems, and suffixes, and two compatibility

tables: prefix-stem table which tells what

prefixes can come with what stems, and stem-

suffixes table which tells what stems can come

with what suffixes.

All the possible combinations of a word to

prefix-stem-suffix are considered (as long as

the stem length is not zero). For each

combination, the prefix, stem and suffix are

checked whether they are contained in the

dictionaries or not. If so, the compatibility

between them is considered; if they are

compatible, this combination is considered as

a possible analysis to the word.

3. Part of speech tagging: After morphologically

analyzing each word, we get the several

possibilities of the word; each possibility has a

corresponding vocalization, and part of

speech. To choose the correct vocalization, we

must choose the correct part of speech (POS).

We built a POS tagger for Arabic, using

unsupervised transformational based learning

methods [7, 8]. We used the unsupervised

methods because we did not have a tagged

Arabic corpus. The only tagged Arabic corpus

is LDC Arabic Corpus [4] that we could not

afford to buy it. The tagger is trained using

collected texts from Internet covering multiple

disciplines [9].

The generated rules are then examined

manually. For some words, the part of speech

tagging cannot resolve the ambiguity;

therefore we need an additional level of

processing.

4. Heuristic rules of disambiguation: These rules

were met by language experts. The rules

specify the choice of a certain part of speech

with regards to the word and its context. For

example, one of these rules specify: "if the

word length is less than 3 letters, and one of its

part of speech is preposition, then choose it".

5. Finally, if after all these levels, the ambiguity

still remains in the word; a random choice of

the part of speech tagged is made.

4. Implementation

We implemented the system using JavaTM

programming language. The implementation itself is

composed of the same parts that are described

previously, plus some additional tools and graphical

user interfaces.

The implementation allows the user to use each part

alone, or use all of them together.

5. Results

Unfortunately, because of the lack of vocalized

Arabic texts, we did not have the opportunity to test our

system thorough fully. However, we did some empirical

tests. We vocalized large Arabic texts automatically

and gave the results to experts in order to evaluate

them. The evaluation shows a percentage of 80-90% of

correct vocalization.

6. Future Works

Although our system uses a detailed analysis of

texts, there are still some missing steps of analysis,

these steps will improve the performance of our system.

These steps may include:

1. Syntactic Analysis: Our current system cannot

restore vowels on the last character of each

word, because these vowels are determined

according to the word position in the phrase

(Subject, Object, Complement ...). Although

texts without these last vowels are well

understood, adding this additional level will

certainly improve the performance.

2. Semantic Analysis: Doing a 100%

Vocalization of an Arabic text requires a full

understanding of the text. Although this is not

at all easy for computers, some semantic

analysis can help improving the performance.

For instance, of the types of errors we still

have in the current system, is when a word has

several possibilities and all the possibilities

have the same part of speech. Without

semantic analysis we cannot solve this type of

problems.

3. Pragmatic Analysis: This type of analysis is

useful in conversations and idiomatic

expressions.

Other improvements include enhancing the current

modules, especially the part of speech tagger. We

mentioned that we used unsupervised methods because

we did not have a tagged corpus. We think that using a

supervised method, trained on a tagged corpus, can

significantly enhance the part of speech tagging

performance.

Our work is not finished and we are still working on

improving it.

7. Conclusion

The problem of restoring vocals in Arabic is

essential for computational applications. Some attempts

were made. We have provided a solution based on

linguistic analysis. An implementation is done, and the

results are promising. We are planning to improve and

enhance the system.

8. References

[1] Sakhr Website

http://www.sakhr.com/Sakhr_e/Technology/Diacritizati

on.htm

[2] Ya'akov Gal, “An HMM Approach to Vowel

Restoration in Arabic and Hebrew”, ACL 02 Semitic

Language Workshop, 2002.

[3] Rani Nelken and Stuart M. Shieber, “Arabic

Diacritization Using Weighted Finite-State

Transducers”, Proceedings of the 2005 ACL Workshop

on Computational Approaches to Semitic Languages,

pages 79-86, Ann Arbor, Michigan, June 2005.

[4] Mohamed Maamouri, Ann Bies, Tim Buckwalter,

and Wigdan Mekki, “The Penn Arabic Treebank:

Building a Large-Scale Annotated Arabic Corpus”,

Paper presented at the NEMLAR International

Conference on Arabic Language Resources and Tools,

Cairo, Sept. 22-23, 2004.

[5] Buckwalter T., “Buckwalter Arabic Morphological

Analyzer Version 1.0”. Linguistic Data Consortium,

catalog number LDC2002L49, ISBN 1-58563-257-0,

2002.

[6] Buckwalter T. Website, Arabic transliteration page

www.qamus.org/transliteration.htm

[7] Daniel Jurafsky and James H. Martin, "Speech and

Language Processing", P 288- 300, Prentice Hall, 2000.

[8] Eric Brill, “Unsupervised Learning of

Disambiguation Rules for Part of Speech Tagging”,

Proceedings of the Third Workshop on Very Large

Corpora, P 1 – 13, Somerset, New Jersey, 1995.

[9] From The Global Arabic Encyclopedia website,

http://www.mawsoah.net/

Appendix A

Buckwalter Arabic Transliteration Table

[6]:

Transliteration Unicode Value and Unicode Name

' U+0621 ARABIC LETTER

HAMZA

| U+0622 ARABIC LETTER ALEF

WITH MADDA ABOVE

> U+0623 ARABIC LETTER ALEF

WITH HAMZA ABOVE

& U+0624 ARABIC LETTER WAW

WITH HAMZA ABOVE

< U+0625 ARABIC LETTER ALEF

WITH HAMZA BELOW

} U+0626 ARABIC LETTER YEH

WITH HAMZA ABOVE

A U+0627 ARABIC LETTER ALEF

b U+0628 ARABIC LETTER BEH

p U+0629 ARABIC LETTER TEH

MARBUTA

t U+062A ARABIC LETTER TEH

v U+062B ARABIC LETTER THEH

j U+062C ARABIC LETTER JEEM

H U+062D ARABIC LETTER HAH

x U+062E ARABIC LETTER KHAH

d U+062F ARABIC LETTER DAL

* U+0630 ARABIC LETTER THAL

r U+0631 ARABIC LETTER REH

z U+0632 ARABIC LETTER ZAIN

s U+0633 ARABIC LETTER SEEN

$ U+0634 ARABIC LETTER SHEEN

S U+0635 ARABIC LETTER SAD

D U+0636 ARABIC LETTER DAD

T U+0637 ARABIC LETTER TAH

Z U+0638 ARABIC LETTER ZAH

E U+0639 ARABIC LETTER AIN

g U+063A ARABIC LETTER

GHAIN

_ U+0640 ARABIC TATWEEL

f U+0641 ARABIC LETTER FEH

q U+0642 ARABIC LETTER QAF

k U+0643 ARABIC LETTER KAF

l U+0644 ARABIC LETTER LAM

m U+0645 ARABIC LETTER MEEM

n U+0646 ARABIC LETTER NOON

h U+0647 ARABIC LETTER HEH

w U+0648 ARABIC LETTER WAW

Y U+0649 ARABIC LETTER ALEF

MAKSURA

y U+064A ARABIC LETTER YEH

F U+064B ARABIC FATHATAN

N U+064C ARABIC DAMMATAN

K U+064D ARABIC KASRATAN

a U+064E ARABIC FATHA

u U+064F ARABIC DAMMA

i U+0650 ARABIC KASRA

~ U+0651 ARABIC SHADDA

o U+0652 ARABIC SUKUN

` U+0670 ARABIC LETTER

SUPERSCRIPT ALEF

{ U+0671 ARABIC LETTER ALEF

WASLA

P U+067E ARABIC LETTER PEH

J U+0686 ARABIC LETTER

TCHEH

V U+06A4 ARABIC LETTER VEH

G U+06AF ARABIC LETTER GAF

