
16    A p r i l 20 14  Vo l . 3 9, N o. 2 	 www.usenix.org

sysadmin

Accelerating the Path from Dev to DevOps
D i n a h M c N u t t

Dinah McNutt is a release
engineer at Google. She has a
master’s degree in mechanical
engineering from MIT and has
worked in the fields of system

administration and release engineering for
more than 25 years. She’s written articles
for numerous publications and has spoken at
technical conferences (including chairing LISA
VIII). mcnutt@google.com

My first lesson in release engineering occurred more than 20 years
ago. I was working for a start-up company, and we discovered that
we could not reproduce the build we had shipped to customers.

This meant we could not send out a patch for this release and our only solu-
tion was to force all our customers to upgrade to the new version. I was not
directly involved in the events that got us into this situation, but I certainly
learned from it.

I’ve spent most of my career in a system administration role at start-up companies and have
learned a lot about software development and releasing products. Twelve years ago, I fell
into a release engineer position when the company I was working for needed someone to do
the work, and I discovered I loved it. All the skills that made me a good system administrator
(problem solving, attention to detail, etc.) were directly applicable.

What Is Release Engineering?
Release engineering (or releng, pronounced “rel-eng” with a soft g) is like the old story of the
blindfolded people and the elephant. You may get a different answer depending on whom you
ask. But, because this is my article, I get to describe my elephant.

In a perfect world, a release process looks like:

◆◆ Compile

◆◆ Test

◆◆ Package

◆◆ Release

A real release process looks more like what is shown in Figure 1.

Figure 1: A real world release process

www.usenix.org	   A p r i l 20 14  Vo l . 3 9, N o. 2  17

sysadmin
Accelerating the Path from Dev to DevOps

I’m not going to go into the details of Figure 1 because the point
is to show that most release processes are complicated. How-
ever, here are some terms from the figure that you might not be
familiar with:

◆◆ Build artifacts. By-products of the release process (i.e., log files,
test results, and packaged binaries). Basically, it’s everything
you want to save from the release process.

◆◆ Canaries. Testing new software on a small number of machines
or with a small number of users.

As the tagline to this article says, releng accelerates the path
from development to DevOps by bringing order to the chaos
shown in Figure 1. How do we do that?

Building Blocks
My eyes usually glaze over when I hear people talk about velocity,
agility, delivery, auditing, etc. Those concepts are the attributes
and results of good releng practices but are not where I like to
start when I talk about releng.

Instead, here are the things I care about:

◆◆ Release engineering from the beginning. Releng is often an
afterthought. Companies should budget for releng resources
at the beginning of the product cycle. It’s cheaper to put good
practices and process in place early rather than have to retrofit
them later. It is essential that the developers and release
engineers (also called releng) work together. The releng need
to understand the intention of how the code should be built
and deployed. The developers shouldn’t build and “throw the
results over the fence” to be handled later by the releng. It’s OK
to outsource the implementation of your releng processes, but
keep the ownership and design in-house.

◆◆ Source code management. Everything needs to be checked into
a source code repository. It’s not just about code. Configuration
files, build scripts, installation scripts, and anything that can be
edited and versioned should be in your SCM. You need to have
branching/merging strategies and choose an SCM system that
makes these tasks easy. I personally think you should have dif-
ferent strategies for ASCII and non-ASCII files (like binaries). I
am not a fan of storing binaries with source code, but I do think
it is reasonable to have separate repositories for those types of
files. (This is one of those topics in which even members on the
same releng team do not agree!)

◆◆ Build configuration files. The releng should work closely with
the developers to create configuration files for compiling,
assembling, and building that are consistent and forward
thinking (e.g., portable and low-maintenance). Do they support
multiple architectures? Do you have to edit hundreds of files if
you need to change compile flags? Most developers hate dealing
with build configuration files, but a releng can make their lives
easier by taking the lead in this task.

◆◆ Automated build system. You need to be able to build quickly
and on-demand. The build process needs to be fully automated
and do things like run tests, packaging, and even deployment.
Your build system should support continuous and periodic (e.g.,
nightly) builds. A continuous build is usually triggered by code
submissions. Frequent builds can reduce costs through early
identification (and correction) of bugs.

◆◆ Identification mechanism. There should be a build ID that
uniquely identifies what is contained in a package or product,
and each build artifact needs to be tagged with this build ID.

◆◆ Packaging. Use a package manager. (As I have said repeat-
edly, tar is not a package manager.) You have to plan ahead for
upgrades, handling multiple architectures, dependencies, unin-
stalls, versioning, etc. The metadata associated with a package
should allow you to determine how the binaries were built and
correlate the versions to the original source code in the source
code repository.

◆◆ Reporting/Auditing. What was built when? Were there any fail-
ures or warnings? What versions of the products are running
on your servers? Logs, logs, and more logs. (We like logs.)

◆◆ Best practices. What compile flags should you use? How are you
versioning your binaries so you can identify them? Are you us-
ing a consistent package layout? Can you enforce policies and
procedures?

◆◆ Control of the build environment. Do your tools allow you to put
policies in place to ensure consistency? If two people attempt
the same build, do they get identical results? Do you build from
scratch each time or support incremental builds? How do you
configure your build environments so you can migrate your
tool base to newer versions yet still be able to support and build
older versions of your code?

I’ve described the building blocks of release engineering.
Through effective use of these building blocks, you can

◆◆ Continuously deliver new products (e.g., high-velocity)

◆◆ Identify bugs early through automated builds and testing

◆◆ Understand dependencies and differences between different
products

◆◆ Repeatedly create a specific version of a product

◆◆ Guarantee hermetic build processes

◆◆ Enforce policy and procedures (this is a hard one—you at least
need to be aware of violations and exceptions)

Sub-disciplines within Releng
Releng is an evolving discipline. It’s going to be exciting to see
how it changes over the next few years. At many companies,
releng is just one of several hats worn. At LISA ’13, I held a Birds-
of-a-Feather session on release engineering. Several people
attended who have a dual role as system administrator and

18    A p r i l 20 14  Vo l . 3 9, N o. 2 	 www.usenix.org

sysadmin
Accelerating the Path from Dev to DevOps

release engineer. Because I come from a system administration
background, that makes perfect sense to me!

However, at a large company like Google, we are starting to see
specialization within the releng team that is dictated by product
area and personal preference. Here are the sub-disciplines I have
identified:

◆◆ Tools development. Extending and customizing our proprietary
build tools; developing stand-alone applications to provide re-
porting on everything from build status to statistics about build
configuration files.

◆◆ Audit compliance. This is no one’s favorite task, but the
Sarbanes-Oxley Act of 2002 dictates that controls must be put
into place for applications that handle financial information.
The controls include (but are not limited to):

○○ Verifying all code that is under scope for SOX has under-
gone a code review (separation of duties)

○○ Verifying the person who writes the code must not also own
the build and deployment processes (separation of duties)

○○ Embedding a unique ID that can tie the binary to the build
that produced it (version verification)

○○ Using a package manager that supports signatures so the
package can be signed by the user who built it (builder and
version verification)

Release engineers work with developers and internal auditors
to ensure that appropriate controls and separation of duties
are in place.

◆◆ Metrics. We have several projects that provide releng-related
metrics (build frequency, test failures, deployment time, etc.).
Some of these tools were developed by members of the releng
team.

◆◆ Automation and execution. We have proprietary continuous-
build tools, which are used to automate the release process. Re-
lease frequency varies widely (from hourly to yearly). Typically,
customer-facing applications are released more frequently in
order to get new features out as quickly as possible. Internal
services are usually updated less frequently because infra-
structure changes can be more expensive. However, with effort,
release processes can be developed which support frequent,
low-impact changes.

◆◆ Consultation and support. The releng team provides a suite of
services to development teams, which range from consulting to
complete automation and execution of the releases.

◆◆ Source code repository management. We have a dedicated team
of software engineers and administrators who work on our
source code management system, but many of the release en-
gineers have in-depth knowledge of the system. We even have
engineers who transferred from the source code repository
team to a releng team!

◆◆ Best practices. This covers everything from compiler flags to
build ID formats to which tasks are required to be executed
during a build. Clear documentation makes it easy for devel-
opment teams to focus on getting their projects set up and
not have to make decisions about these things. It also gives us
consistency in how our products are built and deployed.

◆◆ Deployment. Google has an army of Site Reliability Engineers
(SREs) who are charged with deploying products and keeping
google.com up and running. Many of the releng work closely
with SREs to make sure we implement a release process that
meets their requirements. I spend just as much time working
with SREs as I do Software Engineers (SWEs). We develop
strategies for canarying changes, pushing out new releases
without interruption of services, and rolling back features that
demonstrate problems.

What’s Next?
Here is what I expect to see over the next few years in the field of
release engineering:

◆◆ More vendors entering the space (particularly cloud-based so-
lutions). Look for productization around open source software
(e.g., Git) and tools that will offer end-to-end release engineer-
ing solutions. The latter will probably be achieved through
partnerships between vendors.

◆◆ Fuzzy lines between configuration management and release
engineering (my prediction is that they will evolve into a single
discipline)

◆◆ Standards organizations—ISO standards for releasing highly
reliable software, SOX compliance standards, etc.

◆◆ Industry-standard job ladders

◆◆ College curriculums

◆◆ Industry-accepted best practices

◆◆ Industry-accepted metrics

I am excited to be chairing the upcoming URES ’14 (USENIX
Release Engineering Summit). As we are starting to put the con-
ference program together, we wanted to be able to easily explain
what release engineering is and why it is important (and timely)
for USENIX to sponsor a summit on this topic. I hope this article
has been a good introduction to release engineering and that my
personal experiences have been educational. May all your soft-
ware come from reliable, reproducible processes!

