
The PracTEX Journal
TPJ 2005 No 02, 2005-04-15
Rev. 2005-04-16

OpenType installation basics for ConTEXt

Adam T. Lindsay

To make a sweeping generalization, ConTEXt tends to attract people who are in-

terested in customizing their own documents. While LATEX’s use is dominated by

pre-cooked document layouts, using templates for academic publishing, ConTEXt

seems to attract those people looking for just a little bit more flexibility. It is not

surprising, then, that many ConTEXt users – both professional and personal users –

tire of dealing with the default Computer Modern font family, and look to install

their own fonts in order to imbue their documents with their own personality.

Font purchasing has been a tricky business. Fonts have traditionally been avail-

able in two different formats (PostScript and TrueType) for each of two different

platforms (different encapsulating file formats for PC and Mac). Periodically, mod-

ern updates to those font formats have appeared, promising new features with

that new technology (e.g., Multiple Masters, GX), only to have withered and died

in the marketplace. So designers and others who buy fonts may tire of the frac-

tured market of multiple font formats, but they should understandably be a little

leery of new font formats.

It is within this environment that the OpenType font format was conceived. It

attempts to unify TrueType and PostScript imaging models, and unifies the file

formats so that there is one file designed to work on any platform. It unifies across

many encodings by utilizing Unicode as the native font encoding. It unifies across

expert encodings, small caps fonts, and other fonts with alternative glyphs by in-

troducing OpenType features, which allow fairly sophisticated glyph replacement

procedures. (Much has been written on OpenType elsewhere, so I won’t go on.)

In short, the format is being portrayed as a “future-proof” font format: if you are

buying a font today, you can feel more secure that your purchase will retain its

usefulness when it is an OpenType font.

c©2005 Adam T. Lindsay



This article examines the basic steps necessary for OpenType font .otf in-

stallation, with a focus on ConTEXt-oriented tools. Along the way, I will give

overviews of the general font installation workflow and of the TEXfont font in-

stallation script. The article assumes a fair amount of confidence at the command

line and a properly-configured ConTEXt installation. The instructions are slanted

toward using ConTEXt’s preferred pdfTEX engine, so if you use other engines like

dvips or dvipdfmx, I must assume you know why you are doing so and how to

adapt such instructions for your own needs.

1 Prepare yourself

There are a few general steps when doing any ConTEXt font installation:

Collect the fonts in a directory for installation. Typically, TEXfont will take the

fonts as they come, with no special naming schemes. At most, on my Macin-

tosh, I occasionally need to change file extensions from upper to lower case

(e.g., change Optima.TTF to Optima.ttf). Windows users often need to re-

move underscores from their filenames.

Decide on encodings and, especially with OpenType fonts, choose font features

to use. Font encodings are a surprisingly complex topic, but what you most

need to know is this: although OpenType fonts deal with the gigantic Uni-

code character set well, traditional TEX only deals with 256 characters at a

time. ConTEXt and TEXfont have the texnansi encoding as the default, and

it works well for most European languages. Again, if you have a preference

other than this default, I have to assume that you have and understand your

reasons.

Run TEXfont from the command line with the decisions made. This is discussed

further below.

Verify the run by processing the sample file TEXfont generates.

Make typescripts for using the font repeatably within ConTEXt. Typescripts are

best discussed in detail elsewhere, but I do give the basics to get you started.

2



2 Running TEXfont

There are four major command line options for the texfont command that you

should remember.

texfont --makepath --install --vendor=<fontfoundry> --co=<fontfamily>

The --makepathoption ensures that TEXfont can go ahead and create the direc-

tories so that it can put everything in its right place. The --install option tells

TEXfont to go ahead and copy the font files into your texmf tree. The --vendor=

argument allows you to give a label to the font’s source (e.g., ‘public’ or the name

of a font foundry, such as ‘adobe’). The --collection= argument allows you to

give a label to the specific font family (e.g., ‘torunska’ or ‘myriadpro’). The label-

ing arguments don’t contain critical information, but they are the directory names

that help keep your fonts organized. In other words, you can put whatever you

like, but if you want to be able to come back and understand things later, it’s best

to be consistent with names.

As TEXfont accepts abbreviated command line switches, this set of options is

very commonly abbreviated to:

texfont --ma --in --ve=<fontfoundry> --co=<fontfamily>

If you’re using TEXfont to install Type1 PostScript fonts, then you can create a

temporary directory containing all of the .pfb and .afm files in one font family.

Run the above command, and TEXfont will work at putting everything in its right

place.

2.1 . . . for OpenType fonts

OpenType support in TEXfont builds on Eddie Kohler’s excellent LCDF typetools

package1. There should be binary installations available for most TEX distributions

nowadays. The typetools, centered around doing clever things with .otf fonts,

lend their name to the next command line option you need to know: --lcdf. The

--lcdf switch basically tells TEXfont that you have a bunch of .otf files and you

1available and documented at http://www.lcdf.org/type/. Be sure to use a recent version (2.26

as of this writing)–version 2.2, in wide distribution on the Macintosh, causes problems for TEXfont

users.

3



would like it to use the LCDF typetools as its helper2. Another relevant switch for

OpenType fonts is --preproc, for pre-processing the OpenType files to make them

into Type1 PostScript files3.

The last TEXfont option that we need to know about is --variant=. When used

with the --lcdf switch, this argument takes a comma-separated list of four-letter

OpenType features available in the font. These features are what make the Open-

Type format sexy: you can use small caps, old-style figures, and fancy ligatures

all from the same source font file. TEXfont treats each set of features applied to an

OpenType font as a different font: TEX’s historical limitations mean that it can’t

handle all features all at once.

You will want to enter two OpenType features almost every time in the TEXfont

--variant option: ‘liga’ and ‘kern,’ meaning ‘ligatures’ and ‘kerning.’ Two other

features that appear in many ‘Pro’ OpenType fonts are ‘smcp’ and ‘onum,’ or ‘small

caps’ and ‘old-style numbers.’ Eddie Kohler’s site gives further definitions and

demonstrations of these features.

2.2 For example. . .

It’s best to work through an example. Although the Antykwa Toruńska fonts are

already available for TEX use, we’re going to use them in our worked example be-

cause they act like much more expensive, commercial OpenType fonts. Download

the “Antykwa Torunska Open Type” fonts from:

http://www.janusz.nowacki.strefa.pl/torunska-e.html

and unzip them. Move into the newly created antt-otfdirectory, and run TEXfont:

texfont --ma --in --ve=public --co=torunska --lcdf --pre --va=liga,kern

2The reason why the LCDF typetools aren’t used by default is that I wrote more primitive Open-

Type support using FontForge into an earlier version of TEXfont. Since then, Eddie’s tools have

appeared and raced ahead of FontForge in terms of OpenType capabilities.
3Unlike other type conversion steps, this is designed to be non-lossy: the CFF format within

.otf files is actually Type1 dressed up in different clothing. As a result, you most likely do want to

use this switch, as the resultant .pfb file will be usable in many more TEXy situations. Technically,

many .ttf files can be OpenType fonts as well, but they are best treated with TrueType font utilities,

and are beyond the scope of this article. Also note that .otf files are usable without any conversion

step by pdfTEX, but that since it has trouble sub-setting such fonts, this can lead to unmanageable

file sizes.

4



TEXfont will then leap into life, scrolling by with several pages of text4. All you

really need to know at this point is that behind the scenes, TEXfont:

• applies the features to the encoding, making replacements and ligatures as

necessary and creating a new, font-specific .enc file,

• converts the font metrics into a form TEX can use, resulting in a .tfm file,

• converts the glyphs into .pfb files,

• makes a .map file5 to associate .tfm files with .pfb and encoding files,

• puts everything into its right place, and

• creates a test file in the current directory.

Let’s turn our attention to the test file. Following our instructions, you should now

have a file called texnansi-LIGA-KERN-public-torunska.tex in your directory.

Run texexec on that file:

texexec --pdf --mode=compact --once texnansi-LIGA-KERN-public-torunska.tex

Open the resulting PDF, and you should see page after page of 16 × 16 grids of

characters in different weights and styles.

Let’s run TEXfont once more, in order to get small caps:

texfont --ma --in --ve=public --co=torunska --lcdf --pre --va=liga,kern,smcp

2.3 Making a typescript

Let’s make a quick typescript to be sure that we can use the fonts in other docu-

ments. Create a new file in a text editor, and call it ‘type-torunska.tex’. Copy the

first four \definefontsynonym lines from the automatically-generated test file into

a typescript declaration:

4You may notice warnings like ‘GPOS Pair Positioning coverage format error’ scroll by. I believe

that is an error specific to the OpenType Antykwa Toruńska fonts that will hopefully vanish in

future versions.
5You may notice that there is what, on first glance, appears to be gobbledygook in this file near

the ReEncodeFont directive. This is not nonsense or an error, but an auto-generated hash as a

by-product of the LCDF typetools creating a custom mapping.

5



\starttypescript[serif][torunska][texnansi]

\definefontsynonym[AntykwaTorunska-Bold]

[texnansi-LIGA-KERN-AntykwaTorunska-Bold] [encoding=texnansi]

\definefontsynonym[AntykwaTorunska-BoldItalic]

[texnansi-LIGA-KERN-AntykwaTorunska-BoldItalic] [encoding=texnansi]

\definefontsynonym[AntykwaTorunska-Italic]

[texnansi-LIGA-KERN-AntykwaTorunska-Italic] [encoding=texnansi]

\definefontsynonym[AntykwaTorunska-Regular]

[texnansi-LIGA-KERN-AntykwaTorunska-Regular] [encoding=texnansi]

Add a modified line from the small caps demonstration file, and then close the

definition:

\definefontsynonym[AntykwaTorunska-Caps]

[texnansi-LIGA-KERN-SMCP-AntykwaTorunska-Regular][encoding=texnansi]

\stoptypescript

The above typescript is known as an ‘encoding’ typescript, as it associates a

symbolic name with an actual font file, and also tells ConTEXt to use a specific

encoding. We hook into the text style system with a ‘name’ typescript, which

associates canonical internal font names with the font-specific names:

\starttypescript[serif][torunska][name]

\setups[font:fallback:serif]

\definefontsynonym[Serif] [AntykwaTorunska-Regular]

\definefontsynonym[SerifItalic] [AntykwaTorunska-Italic]

\definefontsynonym[SerifBold] [AntykwaTorunska-Bold]

\definefontsynonym[SerifBoldItalic][AntykwaTorunska-BoldItalic]

\definefontsynonym[SerifCaps] [AntykwaTorunska-Caps]

\stoptypescript

Finally, we devise a short typescript that loads the font map file whenever we

call the typescripts:

\starttypescript[map][torunska][texnansi]

\loadmapfile[texnansi-LIGA-KERN-public-torunska.map]

\loadmapfile[texnansi-LIGA-KERN-SMCP-public-torunska.map]

\stoptypescript

6



With the type-torunska.tex file containing those three basic typescripts, all

that remains is to call it from a test file:

\usetypescriptfile[type-torunska]

\definetypeface[mine][rm][serif][torunska][default][encoding=texnansi]

\setupbodyfont [mine,12pt]

\starttext

Regular, {\it italic}, {\bf bold}, {\bi bold italics}, and {\sc small

caps}.\par

\input ward

\stoptext

The intricacies of typescript definitions and usage will have to be left for an-

other article, but I hope the above provides enough of a template to get started.

3 Troubleshooting

There are a few common problems that TEXfont beginners run into. I can’t address

them all, but here are the two that I encounter most:

permissions If your texmf tree is only writable by a systems administrator, then

you may get a message like this shortly before TEXfont gives up: ‘mktexlsr:

/usr/local/teTeX/share/texmf.local/ls-R: no write permission. Skipping...’ On a sys-

tem such as my UNIX-like Macintosh, I would prefix the same texfont com-

mand with sudo.

unknown FONTROOT TEXfont tries really hard to find the default location for

your fonts, but with some installations it still fails to find where to put the

fonts. If this is the case, re-run texfont, adding the argument:

--fontroot=/path/to/your/texmflocaltree

4 Keep experimenting

TEXfont is a versatile tool, and it is fairly forgiving of its inputs. It works extremely

well at slurping a whole directory full of fonts as they arrive straight from the

7



foundry. It has been adapted to OpenType fonts by leveraging the cleverness em-

bedded in the LCDF typetools. The only thing you can destroy when experiment-

ing is your free disk space!

If you would like to know more, the basic ConTEXt font manuals6 are densely

packed with information. There is another article discussing more advanced is-

sues in OpenType support printed in the Dutch TEX User Group’s MAPS, issue

#31, and there is an earlier version of that article on my website7. I’m more than

willing to field questions via the ConTEXt mailing list, as well, and can update this

article based on users’ feedback. OpenType and TEX is still a new development,

and so can be subject to changing features, but I hope this article introduces users

to the possibilities of this font format of the future.

6http://www.pragma-ade.com/general/manuals/mtexfont.pdf and http://www.pragma-

ade.com/general/manuals/mfonts.pdf
7http://homepage.mac.com/atl/tex/

8


