

H-node.org – Hardware Database for Free Software Community

Analysis and Development

Matti Juhani Lammi

Thesis of Information Technology Degree Programme

International Software Development

Bachelor of Engineering

KEMI 2013

2

PREFACE

I would like to thank Tapani Ruokanen for acting as my instructor while I was writing

this final project. He gave me many advices and provided valuable guidance. I would

like to thank Pertti Ylimäinen and everyone else of the staff of Lapin ATK-Huolto for

giving their support for this project. I would like to thank two Trisquel GNU/Linux

forum users Michał Masłowski and Fabián Rodríguez for proof reading this final

project. Michał Masłowski also helped me in solving a problem with one of my scripts.

Most notably, I would like to thank Antonio Gallo for his invaluable work he has done

with the h-node hardware database project and for answering my many questions for

this project through e-mail. Without him, there would be no h-node and the Free

Software community would be missing one vital pillar to stand on. Lastly, I would like

to thank everyone who has contributed to h-node in any way.

This final project is under Creative Commons Attribution-NoDerivs Unported 3.0 (CC

BY-ND 3.0) license. Copying, distributing and transmitting this project is permitted

worldwide in any medium, with or without royalty, provided no changes are made. The

four scripts, which can be found in the appendixes as appendixes 1, 2, 3 and 4, are under

GNU GPLv3 license. The content on the included CD or compressed file are under their

respective licenses which can be found in the LICENSES folder.

14 May 2013

Matti Juhani Lammi

3

ABSTRACT

KEMI-TORNIO UNIVERSITY OF APPLIED SCIENCES, Technology

Degree programme: Information Technology

Author: Matti Juhani Lammi

Thesis title: H-node.org – Hardware Database for Free Software

Community

Pages (of which appendixes): 78 (25)

Date: 14 May 2013

Thesis instructor: Tapani Ruokanen, M.Sc. (Tech.)

The topic of this final project was a hardware database called h-node for GNU/Linux

operating system distributions which include only Free Software. This project aimed

to introduce that database to new users and to contribute to its development.

The reader will be introduced to fundamental concepts which form an ideological

base for the database. The website of the database will be introduced to the reader

and analyzed section by section. Then several ways of contributing to this database

project are discussed. Finally, a summary of the author’s contributions are displayed

and further development of the project is discussed.

This final project was based on a few literal sources but mainly on the author’s own

experience and deductions. Several interviews of the main developer of the database

project are also used.

The objects of this final project were met. The database was extended significantly

and this final project was written successfully as an introduction to the database

project and the fundamental concepts on its background.

Keywords: computer hardware, databases, free software, linux, open information,

websites.

4

TIIVISTELMÄ

KEMI-TORNION AMMATTIKORKEAKOULU, Tekniikka

Koulutusohjelma: Tietotekniikan koulutusohjelma

Opinnäytetyön tekijä: Matti Juhani Lammi

Opinnäytetyön nimi: H-node.org – Hardware Database for Free Software

Community

Sivuja (joista liitesivuja): 78 (25)

Päiväys: 14.5.2013

Opinnäytetyön ohjaaja: Tapani Ruokanen, DI.

Tämän työn aiheena oli h-node niminen laitetietokanta vain vapaista ohjelmistoista

koostuville GNU/Linux käyttöjärjestelmän jakeluversioille. Aihe valittiin, koska

tietokanta haluttiin esitellä uusille käyttäjille sekä sen kehitystä haluttiin tukea.

Työssä esiteltiin tietokannan taustalla olevat peruskäsitteet, jotka muodostavat sen

ideologisen pohjan. Tietokannan nettisivujen rakenne esiteltiin ja analysoitiin osa

osalta. Useita erilaisia tapoja tukea h-node projektia esiteltiin. Työssä esitettiin myös

tiivistelmä työn tekijän omista tukitoimista projektille sekä tulevia kehityskohteita.

Tämä työ perustui muutamaan kirjalliseen lähteeseen, mutta enimmäkseen työn

tekijän omiin kokemuksiin ja päätelmiin. Työssä käytettiin myös hyväksi

tietokantaprojektin ylläpitäjän haastatteluja.

Tämän työn tavoitteet saavutettiin. Tietokantaa laajennettiin merkittävästi ja tämä työ

kirjoitettiin onnistuneesti johdannoksi h-node-tietokantaprojektiin ja sen taustalla

oleviin peruskäsitteisiin.

Asiasanat: atk-laitteistot, avoin tieto, linux, tietokannat, vapaat ohjelmistot, WWW-

sivut.

5

TABLE OF CONTENTS

PREFACE ... 2

ABSTRACT ... 3

TIIVISTELMÄ ... 4

TABLE OF CONTENTS ... 5

EXPLANATION OF CHARACTERS AND ABBREVIATIONS 7

1 INTRODUCTION ... 8

2 BACKGROUND ... 10

2.1 Free Software ... 10

2.2 GNU, Linux and GNU/Linux .. 12

2.3 Hardware compatibility in GNU/Linux ... 14

2.4 Problem of proprietary drivers and firmware .. 15

2.5 Fully free GNU/Linux distributions .. 16

2.6 Existing GNU/Linux hardware databases .. 17

2.7 H-node ... 18

2.7.1 Short history ... 20

3 ANALYSIS ... 21

3.1 Page layout ... 21

3.2 Home .. 22

3.3 Hardware .. 23

3.4 Issues .. 27

3.5 Search ... 28

3.6 News .. 29

3.7 Downloads ... 29

3.8 Help .. 30

3.9 Wiki ... 32

3.10 FAQ .. 33

4 DEVELOPMENT ... 35

4.1 Expanding the database ... 35

4.1.1 Using Trisquel GNU/Linux live-CD .. 36

6

4.1.2 Comparing one’s hardware with the database .. 39

4.1.3 Adding missing hardware and updating older entries 42

4.1.4 Example: Testing a laptop for h-node .. 45

4.1.5 Example: Unusable or otherwise problematic laptop 49

4.2 Expanding the wiki .. 50

4.3 Discussing with other users ... 51

4.4 Solving and reporting issues .. 53

4.5 Translating h-node to other languages ... 54

4.6 Acting as moderator and administrator .. 56

4.7 Developing source code ... 58

5 RESULTS OF DEVELOPMENT ... 60

5.1 Expanding the database ... 60

5.2 Figuring out distribution of laptop’s compatibility levels 64

5.3 Actions as administrator and moderator .. 66

5.4 Writing the FAQ .. 66

5.5 Issues .. 67

6 FURTHER DEVELOPMENT .. 68

6.1 Automation .. 68

6.2 H-client .. 70

6.3 Documentation ... 71

6.4 Statistics ... 72

7 CONCLUSIONS ... 75

8 REFERENCES .. 77

7

EXPLANATION OF CHARACTERS AND ABBREVIATIONS

BIOS Basic Input Output System, the first program run by the

computer when it is powered on

FSF Free Software Foundation, a non-profit organization formed

to increase the development and recognizability of Free

Software

GNU GPL GNU General Public License, a software license used by

many Free Software developers

RAM Random Access Memory, a type of memory technology used

in computers to access temporarily stored data quickly

UEFI Unified Extensible Firmware Interface, a program on newer

computers meant to replace the BIOS

XML Extensible Markup Language, a language used by

programmers that is both human-readable and machine

readable

8

1 INTRODUCTION

The author of this final project started to use GNU/Linux operating systems in summer

2008. He was amazed by the power and flexibility of these systems and the vast and

friendly community formed around them. Soon, he started to study the history of

GNU/Linux. The author found himself reading about ethical computing, hacker culture

and the Free Software movement.

Now in 2013, he has become a full time GNU/Linux user and a devoted Free Software

supporter. After learning a lot about computing and ethics from the community, he felt

it was time to give something back.

A database about Free Software compatible hardware called h-node was picked as a

topic for this project because the author considers hardware compatibility to be

important for the community. Not much has been written about this subject, so the

community could use a small contribution on this field.

Since h-node is a hardware database accessible through the Internet, h-node.org website

which acts as an interface for the database will be introduced the reader. Different

possibilities to participate in developing the website and expanding the database will

then be inspected and presented to the reader.

The shortage of written material regarding hardware compatibility with Free Software

limits this project in a sense that the author has to deduce some of his points from

written material which does not discuss the matter directly and from interviews of the h-

node’s main developer. Some of the points are given as the author’s personal opinions.

The main objective for this final project is to introduce h-node to people who have

never heard of it before and thus bring new users and contributors to it. For this to

succeed, this final project is aimed to be easy to read and understand and become as

widely available as possible. The other objective is to help developing h-node.org

website and expand the hardware database.

9

There is a separate version of h-node.org designed to be used with mobile devices. It

will be ruled out of the scope of this project. How to make a GNU/Linux live-CD will

not be presented either. There are plenty of instructions on how to make one on the

Internet. A live-CD is the most convenient method for both inspecting details about

one’s hardware and reporting them to h-node.

The reader will be guided on how to add devices to h-node in one part of this project.

This requires light usage of a text-based command line interpreter. It is not necessary to

know how to use one to understand the process or to replicate it without too much

effort. Although, having some basic skills makes the task easier. It is assumed that those

readers who do not know how to use the command line interpreter are willing to learn to

do it by themselves. Again, there are many resources about the subject on the Internet.

Detailed explanations about how to get all the detailed information about one’s

hardware will not be included because long and detailed articles about this matter can be

found in the h-node’s wiki page.

10

2 BACKGROUND

In order to fully understand the significance of h-node and what makes it different

compared to other hardware databases, a few basic concepts must be introduced. They

form the ideological and practical base which h-node is based on.

2.1 Free Software

Free Software is software that respects its users’ rights as computer users instead of

restricting them. A program is Free Software if the user of the program is granted the

four essential freedoms defined by the FSF, usually by having its source code available

to the user and being licensed under a Free Software license.

The most widely used Free Software license is the GNU General Public License or

GNU GPL for short. It requires that the user must give the same four freedoms to other

users with the program if he publishes an exact copy or a modified version of it.

The four essential freedoms are as follows: (Stallman 2010, 20, 43, 199-204)

- Freedom 0: The freedom to run the program, for any purpose.

- Freedom 1: The freedom to study how the program works, and adapt it to one’s

needs. Access to the source code is a precondition of this.

- Freedom 2: The freedom to redistribute exact copies, so one can help his or her

neighbor.

- Freedom 3: The freedom to redistribute modified version of the program, and

release them to the public, so the whole community benefits. Access to the

source code is a precondition of this.

11

Freedom 0 requires that there are no artificial restrictions in the program’s source code

or its license about what can be done with the program. As it is with physical tools like

a hammer, it is up to the user what he or she wants to do with it.

Freedom 1 requires that the user can obtain a copy of the program’s source code with

the program, so that the user can see what the program is actually doing and change it as

he or she sees fit. This makes sure the user is in control of the program and not vice

versa if he or she has the required skills to put this freedom into action.

Freedom 2 requires that the user must be allowed to make exact copies of the program

either for him- or herself as backups or for other people in order to help them. This

forms a base for a digital society where people can help each other by sharing important

programs like word processors, device drivers and even whole operating systems.

Freedom 3 requires that the user is allowed to share the improvements which he or she

made to the program with other people. This is a base for development in a digital

society where people share the improvements they make to the programs they use and

everyone benefits. This freedom also makes it possible to provide software

customization services for profit.

With these freedoms, the user of a program is in full control of it. The user can do

whatever he or she sees fit with it. The user can be sure that the original developer of

the program cannot have an unjust control over him or her through the program. For

example, the developer cannot restrict the program to work only with certain file

formats or protocols or make it spy the user and collect private information. Because the

source code is available, someone will eventually notice if the developer tries to control

the user.

There are programs that do not respect their users. They are proprietary software. They

do not give their users all of the four freedoms, if any. Generally, they will not allow the

user to study how the program works, see what it is really doing, share it or change it.

12

They can even have hidden malicious features. Free Software is a way to avoid these

problems. (Stallman 2010, 43, 117-119, 135)

If the user of a Free Software program which is licensed under the GNU GPL does not

have the necessary skills to change the program, he or she can acquire the skills by

studying, ask other users for help or hire a professional programmer to do the changes

on his or her behalf. If the user hires a professional, the programmer makes the changes

to the program’s source code and compiles a new version of the program based on the

modified source code. He or she then sells a copy of the program licensed with the same

Free Software license to his or her client along with the new source code, so the user

still has the same rights as he or she did with the older version of the program. The

GNU GPL license gives the user legal rights for all of this. (Stallman 2010, 22-23, 43-

44, 199)

Due to the ambiguity of the English word “free”, it is easy to misunderstand the

meaning of Free Software. The word “free” does not refer to price in any way. It refers

to the four essential freedoms. A Free Software program can be sold for a profit or it can

be shared without one as gratis. To get rid of the chance of misconception, an

alternative term can be used: Libre Software.

2.2 GNU, Linux and GNU/Linux

Richard M. Stallman started the GNU Project in 1983. He’s aim was to form a

community of computer users who would use, share and develop Free Software

programs and an operating system made entirely of Free Software: GNU. The logo of

the GNU Project can be seen in Figure 1. (Stallman 1983, retrieved 2.3.2013)

Richard Stallman founded the essential principals of the Free Software philosophy,

wrote the GNU GPL license together with legal aid and worked with the GNU Project

to develop the GNU system. He also co-founded the Free Software Foundation with his

colleagues in 1985 to increase Free Software development. By 1991, the GNU

13

operating system was almost complete. Only one essential piece was missing, a kernel.

(Williams & Stallman 2010, 125-127, 137-141; Stallman 2010, 174)

Figure 1. GNU head, symbol of the GNU Project (Suvasa & Gerwinsky)

A kernel is a program which does a wide variety of tasks like allocating different

recourses to other programs in the system and managing processes. The GNU Project

had started developing their own kernel, but developing it proved to be difficult due to

technical design choices. (Nemeth & Snyder & Hein 2008, 868; Stallman 2010, 27)

In 1991, Linus Torvalds started developing his own kernel and called it Linux. Linus

Torvalds developed his kernel separate from the GNU Project and licensed it with a

non-free license. He changed his kernel’s license to GNU GPL a little later, however,

and made it Free Software. Tux, the mascot of the Linux kernel can be seen in Figure 2.

(Stallman 2010, 174; Torvald 1991, retrieved 2 March 2013)

14

Figure 2. Tux, mascot of Linux kernel (Ewing & Budig & Gerwinski 1996)

In 1992, the nearly complete GNU system and the Linux kernel were successfully

combined to form a complete and functional operating system. This operating system is

today widely known as “Linux”. This naming implies wrongly that Linus Torvalds

started the whole operating system development in the 90’s. It also creates confusion. It

is not immediately clear whether “Linux” refers to the operating system or its kernel. To

give credit for developers of both the GNU Project and the Linux kernel and to get rid

of the confusion, Richard Stallman and the FSF recommend using the name

“GNU/Linux” when speaking about the operating system. (Stallman 2010, 28, 53-55,

174-176)

2.3 Hardware compatibility in GNU/Linux

Hardware compatibility is generally speaking good in GNU/Linux. GNU/Linux can

work on a great variety of hardware ranging from embedded systems to super

computers. It can be used on latest computer models and old machine too. (Gallo 16

April 2013, e-mail)

15

The two biggest hardware categories with incompatibility issues are video and Wi-Fi

cards. When video cards have issues, they are usually partly supported and only lack the

support for 3D acceleration. Incompatible Wi-Fi cards, on the other hand, do not work

at all. (Gallo 16 April 2013, e-mail)

Hardware compatibility depends on whether the device manufacturer or operating

system developer has released the needed driver and firmware for a particular device. If

these are not available for one’s operating system, the device will not work. It is up to

them to choose which operating systems they want any particular device to work on.

(Gallo 16 April 2013, e-mail)

2.4 Problem of proprietary drivers and firmware

When a user updates his or her operating system to a newer version, a new version of

the device drivers and firmware compatible with that system are needed for all the

devices to work. If there is no driver or firmware available for a particular device, it

cannot be used anymore. When operating system developers stop supporting a device

by not developing and publishing its driver and firmware anymore, the device will

become unusable when the user updates the operating system a newer version. This

happens if the device’s driver or firmware is proprietary software.

Many proprietary software drivers and firmware are released only in binary form

without the source code. Binaries are a form of programs which computers can

understand easily, but which are exceedingly difficult for humans to understand. Even

the most skillful of programmers cannot make sense of them. Since the source code

does not come with the driver or firmware, it is very hard for anyone to make a new

version to replace the proprietary one. This creates a problem of hardware which can

become unusable against its owner’s will.

This problem is solved if the driver and firmware is released as Free Software. Then

their source code is available to the public and it is likely that new versions are released

16

even if the official support for the device has been dropped. It is likely that there are

skilled people who like to keep using that device. If not, the user still has the four

essential freedoms in his or her disposal.

2.5 Fully free GNU/Linux distributions

Many GNU/Linux distributions like Ubuntu and Red Hat include some proprietary

software like applications, drivers and firmware. This puts the users of these systems

into harm’s way of proprietary software.

There are, however, GNU/Linux distributions which do not include any proprietary

software but only Free Software. The maintainers of these distributions take great care

to remove any pieces of proprietary software from the system, should they find any, in

order to guarantee their users their four essential freedoms.

The completely free GNU/Linux distributions are as follows: (GNU Operating System

2013, retrieved 18 March 2013)

- BLAG

- Dragora

- Dyne:bolic

- gNewSense

- Musix

- Parabola

- Trisquel

- Ututo.

The mainline Linux kernel nowadays includes some programs which are non-free

software like proprietary device drivers and firmware and some programs which are

released only in binary form without the source code. Therefore, the completely free

GNU/Linux systems cannot use the mainline Linux as their kernel without removing the

17

non-free parts first. Fortunately there is such a version of Linux already available. This

cleaned kernel is called Linux-libre and its mascot, Freedo, can be seen in Figure 3.

Figure 3. Freedo, mascot of Linux-libre kernel (Pérez 2009)

Linux-libre is an official part of the GNU Project. FSF’s sister organization in Latin-

America, the Free Software Foundation Latin-America, is taking care of the cleaning

process. They copy the mainline Linux kernel when a new version is released and run

programs which identify and remove all non-free parts of the kernel. After that, they

release the completely free Linux-libre kernel.

2.6 Existing GNU/Linux hardware databases

Many GNU/Linux distributions have their own specific hardware compatibility

database which their users can use to check whether a particular device works with their

distribution or not. These databases usually list laptop computers and other devices.

Because many GNU/Linux distributions contain non-free software such as proprietary

drivers, their hardware databases have hardware which might become unusable due to

18

dependence on proprietary software. Some of the hardware listed on these databases as

“compatible” is therefore not reliable in the long run. This is problematic for users who

are looking for reliability.

Another issue, although not as big as the previous one, is that one distribution’s

database might not be usable for other distributions’ users. All distributions are different

and thus might have different levels on compatibility with same hardware. Multiple

databases also waste effort. Same hardware needs to be tested and reported many times.

2.7 H-node

H-node is a hardware compatibility database for GNU/Linux. It has many features

which set it apart from the others. H-node has a bigger mission, a wide and growing

selection of different devices and potential to become the most important hardware

database for the whole GNU/Linux community. H-node’s logo can be seen in Figure 4.

Figure 4. Logo of h-node (Gallo 2010)

H-node’s objective is to give its users information about how well a particular device in

its database works with Free Software and Free Software only. This means that h-node

is the central hardware compatibility database of the whole Free Software community,

not just for users of any single distribution. Users of h-node can use any of the

completely free GNU/Linux distributions they want like Trisquel or Parabola.

19

H-node has numerous categories of hardware. Along with laptop computers there are

separate categories for various internal and external devices of the computer like Wi-Fi,

video, Ethernet and sound cards and webcams, scanners, printers and modems.

H-node is accessible through its website in www.h-node.org. Users can add and edit

hardware entries anonymously or create a user account and make their changes

identifiable with their usernames. Every user action is registered and can be overwritten

with previous ones like in Wikipedia.

H-node has its own documentation to help its users. There is a wiki, an FAQ and Help

pages which can all be edited by the users. H-node is Free Software and all of its

hardware data and source code are downloadable.

H-node is not beneficial only to the Free Software community. Those users who are

using a distribution which includes non-free software can use h-node to check which

devices are compatible with GNU/Linux when acquiring new or used hardware. Since

h-node’s data comes from Free Software distributions only, hardware listed as

“compatible” should work with non-free distributions too because they should have the

same Free Software drivers and firmware as the free distributions do. Some devices

listed as “incompatible” might work for them too but could prove to be unreliable due to

dependency on proprietary software in the long run.

H-node is still in beta phase and many features are not implemented yet. It is constantly

growing. New hardware is inserted to the database, new hardware categories are made

and new features are implemented and planned.

H-node has potential to become the most important hardware database for the whole

GNU/Linux community. It can help users to choose hardware that will work with their

operating system, whether it be a free one or not, and guide their purchasing decisions

which, in turn, will have influence toward hardware manufacturers.

20

The ideal situation would be if hardware manufacturers wouldn’t make any hardware

that is dependent on proprietary software but, instead, release all of their software which

the hardware is dependent on as Free Software. A world like that is still a distant dream,

but h-node can get us a few steps closer at least.

2.7.1 Short history

H-node was created by its current main developer, an Italian Antonio Gallo in summer

2010. He wrote a message on Trisquel GNU/Linux’s mailing list about his website

inviting other users to insert their hardware to the database. At the time, only laptops,

Wi-Fi cards and video cards could be inserted. (Gallo 6 February 2013, e-mail)

H-node’s original domain was h-node.com owned by Antonio Gallo. In February 2011,

Richard Stallman contacted him and asked if h-node could become one of FSF’s Free

Software promoting activities and if h-node could be moved to a new domain in www.h-

node.org owned by the FSF. (Gallo 6 February 2013, e-mail)

H-node became a FSF activity, which is why FSF’s logo can be seen on h-node’s

header and FSF started promoting h-node on its own website. Later the same year, h-

node was moved to FSF’s own servers where it is currently hosted. FSF also provides

Antonio Gallo technical support when needed. (Gallo 6 February 2013, e-mail)

Free Software Foundation had its own hardware database. They decide to integrate it to

h-node. After Donald Robertson, the person responsible for FSF’s hardware database

and Antonio Gallo discussed to find the best way for the integration, it was decided that

it would be best to ask for the Free Software community to manually insert the devices

to h-node. The integration has been completed. (Gallo 6 February 2013, e-mail)

21

3 ANALYSIS

H-node.org website acts as a user interface for the hardware database. Through it, users

can access available hardware information, edit existing entries and add new ones. The

website also has sections which are not directly related to using the database itself like

documentation to help users to test and report their devices and users’ profile pages, for

example.

In order to get a clear picture of h-node.org and its functions, it is necessary to go

through it section by section. The site has a simple page layout which is present in every

section of h-node. This layout keeps the function specific sections uniform in style with

each other and makes navigating and using the site simple.

3.1 Page layout

At the top of each section, there is a header which contains the main menu giving access

to all sections of h-node. The header also contains logos of h-node and the Free

Software Foundation. The main menu gives access to the following main sections:

Home, Hardware, Issues, Search, News, Download, Help, Wiki and the FAQ.

Below the header on the right, there is a narrow panel which contains additional

functions and information. Among others, it provides access to different translations of

h-node, a log in field, a link to new user account registration form, a short history of

resent changes made to the database and a table showing how many different devices

are listed in each device category and how many users are currently logged in. The

mobile version of h-node can also be accessed through the side panel. The rest of the

page, which covers most of the space on each section, has section specific content.

22

3.2 Home

H-node’s home page, shown in Figure 5, provides the user brief information about h-

node and its objectives. Users are told how they can contribute back to h-node and why

it is necessary to use only certain GNU/Linux operating system distributions which

consist of only Free Software when testing various devices. Users are also noted that all

text they add to h-node will be put in the public domain.

At the top, important notifications are presented when necessary like in case of server

maintenance. At the bottom of the page, a few links to other free hardware related

websites are available.

Figure 5. H-node’s home page (H-node.org 2013a)

23

3.3 Hardware

H-node’s hardware page, which is shown in Figure 6, has a list of all available hardware

categories in the database. Through this list, every single hardware category can be

accessed and its individual devices can be listed as a whole and also separately accessed

and viewed in detail.

Many new categories of hardware have been added to h-node since its creation. Many

details, like unique device and vendor identification numbers, have also been added to

already existing categories.

In time of writing, there are 16 available hardware categories in total. New categories

are planned and will be implemented when they are ready.

Figure 6. H-node’s hardware page (H-node.org 2013a)

24

The hardware categories are as follows: (H-node.org 2013)

- Notebooks, netbooks and tablet PCs

- Wi-Fi cards

- Video cards

- Printers and multifunction

- Scanners

- 3G cards

- Sound cards

- Webcams

- Bluetooth devices

- TV/Video/FM acquisition cards

- Fingerprint readers

- Ethernet cards

- SD card readers

- Modems and ADSL cards

- RAID adapters

- Host controllers.

In Figure 7, a view of one device category can be seen. In this view, users can see a

summarized view of the corresponding category’s devices. For example in Notebooks,

netbooks and tablet PC category view, users can see the model name of a device, its

vendor, which year the device was commercialized and its compatibility level. Each

device category has similar details available of their devices. The nature of these details

varies depending on the type of the device.

25

Figure 7. H-node’s hardware page, PC category view (H-node.org 2013a)

The category view can be changed by using filters. These filters, visible as yellow boxes

in the Figure 7, can filter out devices from the category view. The user can, for example,

choose to view only devices released in a certain year by a certain vendor with a certain

compatibility level. The user can also use a model name based filter which he or she can

freely write on a field below the yellow filters.

More detailed device view can be accessed though a link which can be found among the

devices’ summarized details in the category view as can be seen in Figure 7. This

detailed device view, as shown in Figure 8, contains all the data concerning a particular

device present on h-node. Again, these details will vary depending on the type of the

device. In case of a device of the Notebooks, netbooks and tablet PC category, the

following details can be seen: (H-node.org 2013)

- Model name

26

- subtype (notebook, netbook, tablet)

- vendor’s name

- device’s architecture (x86, x86-64/amd64, …)

- if the device has free boot firmware (BIOS, UEFI, …)

- if a free operating system can be installed

- if the device prevents the user from installing Wi-Fi cards which are not

approved by the device’s vendor

- year of the commercialization of the device

- compatibility level with Free Software

- on which operating system(s) the device was tested

- which version of the Linux-libre kernel was used during testing

- device’s video card model

- device’s Wi-Fi card model

- device’s webcam card model

Figure 8. H-node’s hardware page, PC category, device view (H-node.org 2013a)

27

After the details listed above, each device entry has a Descriptions field where users can

freely add any additional details about a corresponding device. Usually users write

about how well the device worked for them, if they had any problems with the device

and how they can be fixed.

3.4 Issues

H-node’s issues page, shown in Figure 9, has a list of all reported issues on h-node.

Here registered users can report new issues or discuss the existing ones. Issues are

typically bug reports or requests to implement a certain kind of feature the users would

like to have. There are four possible topics for an issue; Add a new vendor, Maybe a

bug, Add new categories of hardware and Other.

Figure 9. H-node’s issues page (H-node.org 2013a)

28

The list view presents brief information about each issue; its title, topic, who opened it,

when it was last updated, how many replies it has, its priority (high, medium or low)

and its status (opened or closed). A detailed view of an issue can be accessed by

clicking its title.

3.5 Search

Figure 10. H-node’s search page (H-node.org 2013a)

H-node’s search page, shown in Figure 10, lets users to search devices from the

database and compare their hardware with the database. The former functionality

resembles the filters in the hardware page but is still relevant since users expect to find

such functionality in the search page and it offers one feature not found in the hardware

page: a search by ID numbers. The latter functionality can easily identify which of

29

user’s devices are already present in the database and which are not, making adding new

devices to the database easy.

Users can search devices from the database either by a pair of model name and device

type or by using device’s and its vendor’s unique ID numbers. Searching by specific ID

numbers is handy, since devices can have similar names.

In order to compare user’s devices with the database, users have to run a specific

GNU/Linux command and provide its output to the corresponding field on the search

page and click a Search button. This functionality is very useful for adding new

hardware to the database and will be explained later in detail.

3.6 News

The news section was removed just prior to the completion of this final project. The

news section contained news regarding the development of h-node. There were only ten

news entries on the page and it was not up to date. According to it, the latest new

hardware category added to h-node was webcams. It was added in 2011. Other

hardware categories have been added after that.

3.7 Downloads

Anyone can use h-node’s download section, which is shown in Figure 11, to download

h-node’s XML based database files. One can choose whether he or she wants to

download the whole hardware database as one file or any single device category as its

own file.

The files are written in standard XML and can therefore be used by any script or

program made for that purpose. All text added to h-node, including the hardware

30

information, is in the public domain. Thus, the data can be used freely for any purpose.

(H-node.org 2013)

H-node’s source code is not available from this section. Instead, it can be found in the

wiki. There is also a link in the side panel which guides the users to a page where it can

be downloaded.

Figure 11. H-node’s download page for database files (H-node.org 2013a)

3.8 Help

Help page provides the user links to four different wiki articles and a short explanation

about each of them. The user is introduced to the wiki tutorial which provides

information about how to modify wiki pages by using wiki tags, an article about how to

31

acquire detailed information about one’s hardware, what are the different compatibility

levels used to grade hardware’s compatibility with Free Software and what are the fully

free GNU/Linux distributions.

H-node’s help page was created to help users to use h-node and to provide them

instructions and other documentation. When the help page was created, it was a static

web page and thus not editable by the users. Back then, the wiki section did not exist

yet, so the help page was the only source of documentation for the users. (Gallo 27

March 2013, e-mail)

Later, help page and its content was integrated into the wiki section, as shown in Figure

12. After the integration, it became editable by the users and keeping different translated

versions of the help page up to date became easier since all the users could participate in

it. (Gallo 27 March 2013, e-mail)

Figure 12. H-node’s help page (H-node.org 2013a)

32

3.9 Wiki

A separate wiki section, shown in Figure 13, was created for user generated content

when the help section was still static. The aim was to enable users to participate in

writing the h-node’s documentation. (Gallo 27 March 2013, e-mail)

Nowadays, the wiki contains various articles about h-node and how to contribute to the

project. Anyone can create new wiki articles and edit the existing ones as long he or she

is logged in. The changes any user makes to an article can be overwritten if necessary.

(Gallo 27 March 2013, e-mail)

Figure 13. H-node’s wiki page (H-node.org 2013a)

33

3.10 FAQ

H-node’s FAQ page, as shown in Figure 14, is a regular wiki article. What makes it

differ from the rest is its purpose and a special link in the main header made especially

for this article. FAQ’s purpose is to act as one of the first resources of information for

new users when they are using h-node for the first time.

Figure 14. H-node’s FAQ page (H-node.org 2013a)

In time of writing, the FAQ has 11 pairs of questions and answers to help new users to

understand h-node’s objectives and relationship with Free Software, how they can use

h-node and how to contribute back.

The FAQ does not give the users long and detailed technical information about how to

get information about one’s hardware or how to add devices to the database but, instead,

gives a short explanation for each question and guides the users to read the dedicated

34

wiki article related to the subject of each question when such an article exists. The FAQ

is written in a way that it effectively is a short beginner’s guide to h-node.

35

4 DEVELOPMENT

H-node is a young and important project for the Free Software community and, more

broadly, to the whole GNU/Linux community. Antonio Gallo, the creator and main

developer of h-node, develops and maintains the h-node.org website and the database

itself. Developing such an important and huge task which h-node aims to become is

very difficult to do alone. Therefore Antonio Gallo decided to ask other members of the

Free Software community to participate in the development.

There are many ways for a single user to contribute to h-node. He or she can add

missing hardware to the database and update already existing hardware entries. Anyone

can also participate in writing new documentation and improving older entries and help

in translating h-node to other languages. Those familiar with programming, can

contribute to h-node.org’s source code, adding new features and fixing bugs. Of course,

talking about h-node and its mission with other people is a valuable contribution too

since expanding the user base is very beneficial for the project.

4.1 Expanding the database

No matter how well the website is made or how convenient and innovative features it

has, a database project falls short without much actual content both old and new. Thus,

checking whether one has some pieces of hardware which are missing from h-node or

which are in need of updating is probably the most beneficial thing a single user can do.

The process of doing this is rather simple but can be a bit daunting for a user who has

never done it before and is not at all familiar with GNU/Linux.

The first thing one needs is a way to boot one of the completely free GNU/Linux

distributions endorsed by the FSF with one’s computer. Then, the user needs to run a

few simple commands on a text-based command line interpreter to get information

about his or her hardware. That information is then passed on to h-node.org website

36

which processes the information and tells the user which devices are missing from the

database and should be added and which devices are already in the database but might

need updating. Finally, the user manually inserts and/or updates his or her devices to the

database.

One of the easiest to use free distributions is Trisquel GNU/Linux. It will be used as a

platform to demonstrate the contribution process in this section. Bootable disk images

of Trisquel and live-CD burning instructions can be found on Trisquel’s home page on

www.trisquel.info. (Trisquel GNU/Linux 2013)

4.1.1 Using Trisquel GNU/Linux live-CD

After the user has acquired a bootable CD/DVD of Trisquel or any other free

distribution of his or her choice, it needs to be booted up with the computer the user

wishes to test. If the computer does not boot the disk and boots its default operating

system instead, the booting order of the machine needs to be changed. This is quite easy

to implement.

Usually the user needs to access the BIOS and tell the computer to search for an

operating system from the CD/DVD drive first before the hard drive. After that, the disk

should boot. Sometimes the user doesn’t have to go to the BIOS at all. If this

functionality has been implemented in the BIOS, users can directly choose from which

device to boot an operating system from by hitting a required key before the BIOS starts

to boot the default operating system. This feature is not always implemented and the

surest way to configure boot order is through BIOS.

The BIOS is a piece of software which is installed on the computer’s motherboard. Its

purpose is to do various hardware related inspections, find an operating system to boot

and pass on information to the booted system among other things. Nowadays, newer

computers might have a similar but newer piece of software on their motherboards

called UEFI.

37

Every computer is different and the way to access the BIOS or UEFI varies. Usually,

the user needs to hit a certain key before the booting process of the default operating

system starts. This key is usually one of the function keys like F2. After gaining access,

the required changes in the boot order should be easy to make since BIOS and UEFI

have a simple user interface.

When the live-CD of Trisquel GNU/Linux boots, the user is greeted with the live-CD’s

main menu as shown in Figure 15. The user can select the language of the system and

the keyboard layout he or she wants to use by hitting F2 and F3. After that, the

distribution can be booted by selecting Try Trisquel without installing from the menu

and hitting the enter key.

Figure 15. Main menu of Trisquel 6.0 live-CD (Trisquel GNU/Linux 6.0 live-CD 2013)

38

Any operating system booted from a live-CD rather than the hard drive, is run

completely in RAM. This means that every change the user makes to the system,

Trisquel in this case, will be lost after the computer is turned off.

The user can try out different features of Trisquel and even install and uninstall

programs while keeping his or her default operating untouched. The user can also access

his or her hard drive easily if needed. This is handy when the user wants to save files

from a broken system which does not boot up anymore. The user can also install

Trisquel permanently to the hard drive along with his or her default system or replace it

entirely. (Trisquel GNU/Linux 2013)

Figure 16. Desktop of Trisquel 6.0 (Trisquel GNU/Linux 6.0 live-CD 2013)

Fully booted and ready to be used system is shown in Figure 16. The main menu can be

found by clicking the blue Trisquel logo on the left end of the panel. All applications

and locations can be found there. The browser can also be launched by clicking an icon

39

on the panel which looks like Earth with a mouse cursor on it. The system should

already have a connection to the Internet if a wired connection is in use. Wi-Fi controls

can be found on the right side of the panel.

At this point, the user should register an account for him- or herself in h-node if he or

she has not already done so. If the user does not log in to h-node, the new device he or

she adds to the database will not be visible to regular users right away but only after an

administrator has approved it. Only those users who have logged in can edit existing

hardware entries.

New accounts can be created by clicking the create new account link on the right side

panel on any page in h-node as can be seen in Figure 14. Those users who already have

an account can use the same panel to log in.

4.1.2 Comparing one’s hardware with the database

A user can compare his or her devices with the h-node’s hardware database by

providing information about them to h-node.org’s search page. There is a section called

analyze the output of the lspci command in there. In this section, there is a field which

accepts hardware information produced by a command called lspci. The user must use a

text-based command line interpreter to run the command in order to get the needed

information.

A text-based command line interpreter called Bash can be run on a graphical terminal,

as seen in Figure 17. The terminal can be launched by hitting Ctrl + Alt + T in Trisquel

or by finding a launcher for it in the main menu. The launcher is in the Accessories sub-

menu.

40

Figure 17. Bash in a graphical terminal (Trisquel GNU/Linux 6.0 live-CD 2013)

The user can run a command just by typing it in bash and hitting enter. The search page

accepts the output of the lspci command only if lspci is used with options v, mm and nn,

so they need to be added to the command. Since this final project aims to make

accessing the output easy for those users who have not used a command line interpreter

before, an additional section will be added to the command which writes the output of

the command to a file rather than on the terminal itself. So, the whole command the user

needs is:

lspci -vmmnn > file.txt

This will write the needed output to a text file called file.txt which can be found in the

user’s home folder. The home folder can be found in the main menu or as a link on the

desktop. Due to the nature of bash, the command will not work correctly if the space

between the command name lspci and the options -vmmnn is missing or if the name of

41

the output file has spaces. The two space characters before and after the > character are

optional.

Figure 18. Using the output acquired from the lspci (H-node.org 2013a)

After getting the hardware information, the user copies it from the output file and pastes

it on the appropriate field in the search page as shown in Figure 18. After clicking the

Search button, the user will be presented a list of his or her hardware as shown in Figure

19.

All those hardware entries which are on a blue background are already in the database

and the user should check if they need updating. Those entries which have a yellow

background are missing from the database and the user should add them to it. The list

includes only those pieces of hardware which have their own category in h-node since

the search page does not recognize uncategorized hardware.

42

Figure 19. Results of comparing one’s hardware with the database (H-node.org 2013a)

4.1.3 Adding missing hardware and updating older entries

The easiest way new hardware entries can be added to the database is to click the Insert

link at the bottom of each listed yellow hardware entry as can be seen in Figure 19. This

will take the user to a corresponding hardware category page where a new hardware

entry can be created by clicking the New icon as seen in Figure 7. Clicking this icon will

take the user to the actual hardware insertion page as shown in Figure 20.

43

Figure 20. Hardware insertion page (H-node.org 2013a)

Here, the user has to manually insert all the details about his or her device to the

corresponding fields. When ready, the user can create the new hardware entry by

clicking the Save button at the bottom of the page. After that, the new piece of hardware

is immediately added to the database and visible to all users as shown in Figure 21 if the

user was logged in when adding the device.

The user can find documentation about how to find out the necessary details about his

or her device by reading guides which can be found by clicking the two learn how to

find it links or by searching the Discover your hardware article from the wiki.

44

Figure 21. An example of a Wi-Fi card device entry (H-node.org 2013a)

The already existing hardware entries, listed on blue backgrounds as seen in Figure 19,

can be accessed by clicking their name which acts as a link. The link will take the user

to the corresponding device’s page as shown in Figure 21. Here, the user can click the

Edit icon at the top of the page to edit the device’s information. The user will be taken

to the hardware insertion page, as seen in Figure 20, which has some information about

the device already inserted by other users.

After editing the device’s details the user can save the changes he or she made by

clicking the Save button. The new version of the device page will replace the older one.

However, the older one can be restored from the page’s history section if wanted.

45

4.1.4 Example: Testing a laptop for h-node

The whole process of testing a laptop for h-node will not be introduced here. Only the

most important phases will be discussed. A Dell Vostro 3300 laptop will be used as an

example machine. This laptop and its internal devices can already be found in h-node

but, for the sake of this example, that fact is ignored.

After booting the machine with Trisquel GNU/Linux, its internal devices will be

compared with the h-node’s hardware database as described before. Then, the existing

device entries will be checked if they need updating and will be updated if necessary.

Then, all the missing devices will be inserted to the database if they can be successfully

tested to see whether they work or not. If some device cannot be tested for whatever

reason, It will not be added to the database.

In order to keep this example simple, It will not be explained how to get all the details

about each device such as model names and ID numbers because the needed

documentation for that can be found in the h-node’s wiki section.

Let us assume that the following results are got after using the output of the lspci

command in the h-node’s search page:

- Wi-Fi card (present in h-node)

- Video card (present in h-node)

- Ethernet card (missing from h-node)

- Sound card (missing from h-node).

First, the Wi-Fi and video card’s details are checked and updated if necessary. They will

be tested whether they work or not and the findings are reported. Testing the Wi-Fi card

is easy and quickly done. If the laptop can be connect to the internet by using a wireless

connection, then the Wi-Fi card works. The network connections can be accessed on the

right side of the panel on the Desktop or from the main menu: System Settings >

Network Connections.

46

The video card is not as easy to test. It has three different compatibility levels where as

the Wi-Fi card has just two; works and does not work. Video cards have an additional

3D acceleration feature which either is or is not supported. The cards can work without

it and the computer can be used without 3D acceleration being supported but the

computer will then have some problems with displaying high quality 3D graphics. The

compatibility levels of a video card are thus; works with 3D acceleration, works but

without 3D acceleration and does not work at all.

If Trisquel GNU/Linux can be successfully booted and the desktop view accessed, then

the video card is at least partly supported. After that, all that needs to be done is to test

whether the 3D acceleration is supported or not. Any application which uses 3D effects

can be used to estimate this. If the application works fluently, the acceleration should be

supported.

A simple 3D table tennis game called Cannon Smash, as shown in Figure 22, can be

used to test the video card’s 3D acceleration feature. This game is a very quick way to

learn whether the 3D acceleration is supported or not. The game has a 3D animation as

a background for its main menu and, just by starting the application, it can be estimated

whether the video card is fully supported or not. This game can be installed by

searching it from the package repositories by accessing the Add/Remove Applications

entry in the main menu or by running the following command on the terminal:

sudo apt-get install csmash

47

Figure 22. Cannon Smash game (Trisquel GNU/Linux 6.0 live-CD 2013)

Ethernet card is maybe the easiest device to test. If a connection to the Internet can be

acquired by using an Ethernet cable, the card works. The sound card is also relatively

easy to test. A sound test can be used to test the card. The test feature can be found in

the main menu: System Settings > Sound > Hardware > Test speaker. If the test sounds

can be heard, the card works.

After testing the Ethernet and sound cards, they are inserted to the database, as

described in section 4.1.3 Adding missing hardware and updating older entries. A wiki

article called Discover your hardware can be used as a reference for getting all the

necessary hardware details.

After updating the existing hardware entries and adding all the missing ones which

could be tested, only the laptop itself needs to checked whether it is already in the

48

database or not. The database sees a laptop as a regular device entry so adding or

updating a laptop is not really different compared to any other device. Only the device

details are different.

The search page can be used, as shown in Figure 10, or the hardware page’s Notebooks,

netbooks and tablet PC category view, as shown in Figure 7, to search for the laptop

from the database. If it can be found, it needs to be checked whether it needs updating

just like before with the Wi-Fi and video cards in this example. If the laptop cannot be

found, it needs to be inserted to the database.

Knowing one’s laptop’s full model name is not always easy. Usually the surest way is

to check below one’s laptop and search for a sticker on which the model name is

printed. Sometimes this sticker is under the battery which must be removed in order to

see it.

Usually the model name is quite simple like in case of this example: Vostro 3300.

Sometimes, however it can be rather complicated like in some Acer’s laptops; Aspire

1825PT-734G32n (ZE8). It is important to report the full model name of a laptop. The

manufacturers can release different versions of the same model assembled with different

components and thus these versions can have totally different compatibility levels with

Free Software.

Before adding a new laptop to the database, a few things must be tested first. The

webcam must be tested, in case the laptop has one, and the Wi-Fi and video cards too.

Since Wi-Fi and video cards were tested earlier already, it is not necessary to test them

again. The webcam can be tested easily with applications like Cheese and Camorama

Webcam Viewer. If a stream of video can be seen, it works. Both applications should be

used, since sometimes some cameras do not work with Cheese but will work just fine

with Camorama. Both can be installed easily from the Add/Remove Applications entry

in the main menu or by running the following command on the terminal:

sudo apt-get install cheese camorama

49

4.1.5 Example: Unusable or otherwise problematic laptop

It is important that all kinds of laptops are reported to h-node, both compatible ones and

less compatible ones. Even those which are totally unusable must be reported so that

everyone can know which devices to avoid.

Sometimes when testing different laptops, a user may run into incompatibilities which

will make it difficult to report the laptop to h-node. Based on the experience of the

author of this final project, such situations are really rare but possible. So, it is necessary

to elaborate what one can do should he or she face such a machine.

Reporting testing results to h-node becomes difficult when both the Ethernet and Wi-Fi

cards are incompatible with Free Software meaning that the user cannot connect to the

Internet. Another problematic situation is when the video card is barely functional

enabling booting only to text based interface instead the graphical desktop.

In case of a pair of incompatible Ethernet and Wi-Fi cards, all the tests can be

performed normally. The only difference is that all the test results have to be saved to a

file, transferred to another computer via USB pen drive, for example, and reported with

a machine which has a working connection to the Internet.

If the video card is totally incompatible, then hardly any tests can be performed to see

which devices of the laptop work and which do not. A working computer must be used

to check if that laptop can be found in h-node. If it cannot, it must be added to the

database with the lowest compatibility class for laptops: E-Garbage. It means that the

laptop is basically unusable. Comments should also be added to the description section

explaining how the laptop was tested, what could and could not be tested and why it

was given the lowest compatibility class.

50

4.2 Expanding the wiki

Every project needs a good documentation and h-node is no exception. All

documentation of h-node can be found in the wiki section as wiki articles. These articles

can be freely edited by any user who has logged in. Likewise, new articles can only be

created by users who are logged in.

Figure 23. A view of the wiki article editing page (H-node.org 2013a)

To edit an existing wiki article, the user needs to click the edit button of the

corresponding article which can be found at the upper right part of the page below the

header as shown in Figure 13. The user will be taken to the wiki editing page, as shown

in Figure 23, where he or she can find a simple user interface with all the needed tools

to edit the article.

51

As can be seen in Figure 23, the user can edit the article by editing its source code. The

h-node’s wiki articles are mostly written in plain text but additional wiki tags are used

to format the appearance of the article. A tutorial about how to use these tags can be

found by clicking discover all the wiki tags link above the source code editing field.

These tags can also be used when writing a description for a device.

After making some changes, the user can preview the new page before saving it by

clicking the Preview button. A preview view of a wiki page is shown in Figure 24.

Figure 24. A preview of a wiki page (H-node.org 2013a)

4.3 Discussing with other users

Contributing to h-node does not have to be done alone. There are many places where

one can discuss with other users in h-node. The best way to contact other users and the

52

main developer is the mailing list. It is the easiest way to reach many active users and

discuss with them about h-node and its development. The mailing list’s subscription

page, as shown in Figure 25, can be accessed from the right side panel on any page.

Figure 25. H-node’s mailing list’s subscription page (H-node.org 2013a)

Every device entry and wiki article has its own talk page in h-node. These pages can be

used to leave messages to other users or to participate in a discussion about one specific

matter like how some particular issue should be solved for example. These talk pages

can be accessed through a talk button which can be found on the corresponding page

like from a wiki article’s page as shown in Figure 13.

The mailing list is still the best way to contact other users. The talk pages are useful

mainly to notify users who edited a device entry about possible issues with their edits.

53

4.4 Solving and reporting issues

As stated in section 3.4 Issues, any registered user can create a new issue or participate

in discussion with other users about existing ones. Usually users raise an issue when

they have found some device whose vendor is not listed in the device vendors’ list.

Another very usual issue type is a feature request. Figure 26 shows one example of a

feature request issue.

Figure 26. Example of an issue with users discussing it (H-node.org 2013a)

By participating in these discussions, the users can help the main developer in

developing h-node. Technically skilled users can also participate directly in the

development by solving these issues once a suitable solution has been agreed upon.

54

4.5 Translating h-node to other languages

English version of h-node has been translated into five different languages. In total, h-

node is available in English, French, German, Spanish, Greek and Italian. All these

versions of h-node are maintained by users who participate in the h-node translation

project. This project has its own wiki article as can be seen in Figure 27.

Figure 27. A view of the h-node’s translation page (H-node.org 2013a)

There are many ways a single user can participate in the h-node translation project. One

can use language related wiki tags while writing in the device’s description sections to

make separate tabs for each language. In Figure 28, a user has modified the description

section to include two language tabs; English and Spanish which each contain the

device description in the corresponding language. In this way, every user can view other

language versions of the description easily.

55

Adding language tabs in the description sections is a natural way to translate device

descriptions to other languages. The device descriptions are a part of the database itself

and, hence, cannot be translated as a part of a web page.

Figure 28. A device’s description section with two language tabs (H-node.org 2013a)

Users can translate any wiki article freely to other languages as long as there is a version

of h-node for that language. The articles have to be created and maintained separately

for each version of h-node. At the bottom of each article, users can put links to other

language versions of that article if they exist much like in Wikipedia.

Translating the actual web pages of h-node is handled differently than translating wiki

articles or device’s descriptions. Most of the pages in h-node consist of key words or

phrases which have been listed in one file called languages.php in h-node’s source

code. Downloading the source code and editing this file is one way of translating

different web pages of h-node. The other way is to find and edit those files which hold

56

translatable text itself like home page’s notations about h-node’s objectives and Free

Software. More information can be found in the translation project’s wiki article: l10n

process.

4.6 Acting as moderator and administrator

Active users can gain administrator’s and moderator’s privileges. This means that they

can perform various actions the regular users cannot. These privileges are granted by h-

node’s main developer when he sees fit.

The main developer can grant either one of the roles of an administrator or moderator to

an active user or both of them. If one wishes to become an administrator and/or a

moderator, he or she can contact the main developer through the mailing list and ask

him.

As a moderator, the user can close or hide issues, wiki articles and users’ talk entries

which can be found on talk pages of device entries. He or she can do this by using tools

which are not visible to regular users on the appropriate pages. In Figure 29, an issue

which has been closed and hidden is shown.

This issue was first closed and then hidden from regular users by a moderator who

considered it to be spam. On the dark orange panel at the top of the page just below the

header, the moderator’s controls can be seen. In case of this issue, any moderator can

choose to re-open the issue and make it visible to regular users. (Gallo 28 September

2012, e-mail)

57

Figure 29. Moderator’s controls on a hidden issue page (H-node.org 2013a)

A user who has posted only spam and does not have any contributions listed on his or

her user page is not likely to start contributing to h-node and ought to be blocked. A

moderator cannot do this but an administrator can.

As an administrator, a user can block other users from their user accounts, delete device

entries and approve those device entries which have been made by anonymous users.

After the approval, those device entries will be added to the database and made visible

for other users. (Gallo 28 September 2012, e-mail)

Most actions carried out by any kind of users can be reversed. For example, a device

entry can be returned to any previous state in its history if such an action is preferred.

Even moderator’s and administrator’s actions can be reversed. A hidden issue can be

made visible and a blocked user can be unblocked. The only action that cannot be

58

reversed is a deletion of a device entry carried out by an administrator. (Gallo 28

September 2012, e-mail)

4.7 Developing source code

Most of the development of h-node.org website is done by the h-node’s main developer.

This does not mean that other users who are skilled in programming couldn’t participate

in it. There is an article in the h-node’s wiki about the development process as shown in

Figure 30.

Figure 30. Article about h-node’s source code development (H-node.org 2013b)

H-node.org is written in PHP programming language and Subversion is the version

control system used by the developers. If one wants to participate in the development,

he or she needs to download the latest version of the source code, install Subversion and

59

set up and configure a web server like Apache so that he or she can test his or her

changes before contributing them.

More detailed instructions are available in the wiki article and in the source code’s

README file. However, there is no complete and coherent documentation about the

matter yet which can make things difficult for those users who are not used to website

development.

60

5 RESULTS OF DEVELOPMENT

One of the objectives for the author of this final project was to participate in the

development of h-node. Since h-node is still a rather young and small project, one the

most important ways of contributing to it is extending the hardware database itself. The

best way for the author to get his hands on as many different devices as possible was

working as a member of a maintenance team in an IT hardware store.

A local IT store called Lapin ATK-Huolto proved to be an ideal place. Not only was its

location very convenient and its supply of devices to test endless, but its personnel also

proved to be nice and supportive of this final project. The author worked there for 20

weeks from 9 September 2012 to 21 January 2013 as part of his practical training period

which is a part of his studies. The job was to repair broken computers and assemble new

ones. Every time there was a working device available for testing, it was tested and the

results were reported to h-node.

Expanding the hardware database was not the only contribution the author made for h-

node although it was the most important one. The followings are summarized result of

the author’s contributions to h-node since he started to work with it in May 2012.

5.1 Expanding the database

During the time at Lapin ATK-Huolto, the author had a chance to test a huge amount of

different devices. These were mainly laptops and their internal parts but occasionally

there was a chance to test some other types of hardware too.

H-node keeps track of every edit made by users but it is still difficult and cumbersome

to get a clear picture of what kind of contributions any single user has made in a given

time. Since the author wanted to know exactly this, a script was written to do the work

61

for him. This script, which can be found in the appendixes as Appendix 1, uses a few

different sources of information to perform the calculations.

The script will calculate how many devices the author has added or edited in h-node and

when these contributions were made starting from May 2012 and continuing to March

2013 when writing this final project was started. The script will also illuminate on

which types of devices the author has been working with, that is, what kind of devices

he has added or edited in h-node.

The script will produce a nice human readable output which is presented in Appendix 5.

A line chart has been made based on a part of that output which can be seen below as

Figure 31. The Y-axis indicates the amount of contributions made and the X-axis

indicates the month when they were made.

Figure 31. The author’s hardware related contributions to h-node

62

In Figure 31, the red line indicates the amount of new devices which have been added to

the database and the blue line indicates the amount of times an existing device was

updated. A total value of contributions is indicated by the yellow line.

From the Figure 31, it can be clearly seen that most of the hardware related

contributions were made while the author was doing his practical training period

between September 2012 and January 2013. The amount of contributions also declined

toward the end of the practical training period. This is no surprise since the author had

to work with hardware which had been already tested and reported to h-node more often

toward the end of the practical training period. There simply were not as much

previously untested hardware available anymore.

The line chart in Figure 31 is a fine indicator of how the author’s contributions

distributed during time but it does not give very definitive figures about how many

contributions were made in total. However, the script was made to calculate the specific

total figures of both the author’s contributions and other users’ contributions as a whole,

so they can be presented here. Here is a part of the output created by the script:

Hardware contributions:
==

New hardware inserted by me: 247
Old hardware updated by me: 483
--
All my contributions in total: 730
Other's contributions in total: 646
--
All contributions in total: 1376

It can be seen from the script’s output that the author managed to make more

contributions in quantities than all the other users of h-node in total between May 2012

and March 2013. This was very surprising. The author managed to insert almost 250

new devices to the database and made updates to various existing devices roughly 480

times.

The author wanted to know how many laptops and other devices he had inserted to h-

node. So, the script was made to specify the distribution of the contributions by

63

hardware class and, within each class, specify the type of the contribution. This way, it

could be clearly seen what had been achieved, that is, how many devices had been

added to each class and which types of device entries had been updated the most. The

part of the script’s output in question can be seen below:

My contributions per hardware class:
===

Class Updated Inserted Total

notebook 204 117 321
videocard 68 60 128
soundcard 54 16 70
wifi 51 10 61
ethernet-card 54 19 73
sd-card-reader 11 6 17
webcam 6 4 10
bluetooth 0 0 0
acquisition-card 3 3 6
3G-card 6 2 8
host-controller 2 1 3
fingerprint-reader 1 0 1
RAID-adapter 0 0 0
modem 3 0 3
printer 15 8 23
scanner 3 1 4

Total: 481 247 728

As it can be seen, most of the contributions are related to laptops as well as internal

devices of laptops and desktop computers. The most contributed hardware class is the

Notebooks, netbooks and tablet PCs category which is listed as notebook class in the

script’s output. More than 100 new laptops is a very nice result. At the time of writing,

there are 314 laptops in h-node which include those added by the author. Being able to

update existing laptop entries about 200 times is also a rather satisfying result.

It must be noted that some of the updates made can have been made to devices which

have been previously inserted to the database. That is why the total amount of laptop

related contributions, for example, is bigger than the amount of laptops in the database

itself.

64

It must also be noted that the scripts made by the author may not be 100% accurate.

Mistakes may have been made when the scripts were being written but the author

believes that the results they give are reliable and should be considered being roughly

correct. However, there are some inaccuracies in the results. One can see, for example,

that the total amount of contributions as presented in the two parts of the script’s output

above are not completely the same. In the first part of the output, it is stated to be 730

but in the latter it is 728.

5.2 Figuring out distribution of laptop’s compatibility levels

All devices in h-node have a specific compatibility level with Free Software depending

on the type of the hardware. Some devices like Wi-Fi cards are simple to categorize.

They either work or do not work. Laptops, on the other hand, have multiple very

specific compatibility levels.

The compatibility of laptops depends on the compatibility of their internal devices.

Thus, multiple compatibility levels are necessary to categorize laptops in h-node. The

laptops’ compatibility levels are as follows: (H-node.org 2013. Retrieved 28 March

2013)

- A-Platinum (Everything works perfectly)

- B-Gold (Everything work, but not with full performance)

- C-Silver (One device is not supported)

- D-Bronze (More than one device is not supported)

- E-Garbage. (Whole device is not compatible with Free Software)

With these compatibility levels, it is easy to categorize different laptops. The B-Gold

level refers to laptops which work fine but cannot use all the features the hardware

would allow. This is usually with laptops which have a video card which is only partly

supported. The card itself works but cannot utilize its 3D acceleration features.

65

At the moment of writing, there was no easy way to tell how well the laptops listed in h-

node’s database are supported with Free Software. So, another script was written to

figure this out. This script is listed in the appendixes as Appendix 4 and its output in

Appendix 8. A pie chart has been made with LibreOffice Calc based on the script’s

output. It can be seen in Figure 32.

Figure 32. Distribution of laptop’s compatibility levels in h-node

It can be seen that roughly half the laptops in h-node are really well supported with

completely free GNU/Linux distributions and, hence, with Free Software. Most of the

laptops which have some incompatibilities are also quite well supported since most of

them have only one incompatible device like a non-functioning Wi-Fi card. Wi-Fi cards

are usually the one device which is incompatible and they are quite easy to replace with

a freedom friendly card in most cases.

Having this good compatibility is good news for the Free Software community and the

entire GNU/Linux community as a whole, that is, even to the users of non-free

66

GNU/Linux distributions. But it must be noted that the sample of laptops used to make

this chart is rather small. It is only 314. Thus, this result may not be reliable enough to

give a good general picture of all the commercially available laptop’s compatibility with

Free Software but this is the best that can be done at the moment. The comparability of

h-node’s laptops compatibility and any laptop’s compatibility in general will improve in

time when more laptops are tested and reported to h-node.

5.3 Actions as administrator and moderator

The author was granted the administrator’s and moderator’s privileges while doing his

practical training period. This was an unexpected but a pleasant surprise. A new way to

contribute was gained. Since then, the author has hidden issues on the Issues page

which were clearly spam, closed solved issues and blocked users from their accounts if

they have written only spam.

These actions are not numerous since the focus was mainly on extending the hardware

database. Nonetheless, two other scripts were written to calculate and present these

contributions. The first script is about author’s actions as an administrator. It can be

found in the Appendix 2 and its human readable output in Appendix 6. The second script

is the equivalent of author’s actions as a moderator. It can be found in the Appendix 3

and its output in Appendix 7.

5.4 Writing the FAQ

The author felt that h-node was lacking a proper introduction to new users who have

just found the site and are wondering what it is really about. So, he decided to write an

FAQ where the most crucial questions the new users usually have are answered. The

FAQ page can be seen in Figure 14.

67

The answers were written to give the new users a good general picture of each topic. If a

more detailed wiki article about the matter existed, the user is guided to it with a link.

Writing the FAQ may be the most important author’s contribution after extending the

hardware supply in the database.

5.5 Issues

The author has reported many issues in h-node’s Issues page about various subjects.

Some have been about small bugs while others were about some new feature which was

suggested to the main developer to be implemented. Some of the issues which have

been reported have been solved while others are either still being worked on or have

been deemed unnecessary after discussion.

One example of an issue reported by the author is issue #167. Once when adding a new

device to the database, the number of allowed characters in the model name field was

not enough to fit in the whole name of the device. The number of allowed characters

was increased after this issue was reported.

68

6 FURTHER DEVELOPMENT

H-node is still in development. The main developer has done much to make h-node

what it is today and the user community has also done a great job in contributing to the

development process. Still, many new features are waiting to be added and others to be

improved.

Here are some points that the author would like to suggest for further development.

Some are small features while others could serve as a base for a final project, even.

6.1 Automation

The process of inserting a new device to the database could use some automation.

Firstly, h-node’s hardware insertion form, as seen in Figure 20, could get some of the

required hardware details from the lspci command’s output which is used in the search

page in the beginning of the process, as can be seen in Figure 18, and use them to fill in

some of the fields in the hardware insertion form.

This would reduce the amount of work each user has to do and the possibility of a

human error providing that the automation process is reliable. Among the details which

could be get automatically would be the device’s name and the device’s and its vendor’s

unique ID numbers, for example. Of course, the user could always review and change

any automatically filled in information.

69

Figure 33. The hardware insertion form (H-node.org 2013b)

Secondly, the Insert link below each device entry in the list of hardware which should

be added to the database presented after comparing one’s hardware to the database, as

shown in Figure 19, could take the user directly to the corresponding hardware insertion

form, as shown in Figure 33. At the moment of writing, it takes the user to the

corresponding hardware category page, as shown in Figure 7, where the user must click

another link to get to the insertion form. There is no need for this one extra click.

These two features would reduce the amount of effort the users have to make just to be

able to contribute. This is not so big of a problem if one contributes only a few devices

occasionally but proves to be a bit annoying if one adds a lot of devices at once or

contributes frequently.

70

6.2 H-client

H-client is a desktop application which, when run, collects as much hardware

information of the user’s computer as possible and reports it automatically to h-node. Its

aim is to ease the contribution process to h-node.

Figure 34. H-client project page in the wiki (H-node.org 2013b)

H-client is developed much the same way as h-node.org. It is developed by volunteers,

its source code is available for download, as can be seen in Figure 34, and anyone can

participate in developing it. The version control system used by the developers is

Subversion.

H-client is still in development. Most of the devices can be reported to h-node by using

the application according to its development page. Laptops are not currently supported.

71

Further improving this application could prove a good subject for a final project or a

regular software development project.

6.3 Documentation

The level of documentation varies greatly in h-node. Some is well written, consistent

and detailed while some is inadequate and difficult to use for a non-technical or

inexperienced user.

Figure 35. Documentation about developing h-node’s source code (H-node.org 2013b)

A good example of an inadequate documentation is the h-node’s source code

development project page, as shown in Figure 35. A user who is not familiar with

website development cannot participate easily in the source code development project.

The documentation explains how the user can get the source code but it does not clarify

72

how he or she is supposed to test his or her changes before committing them or how the

committing process works.

The committing process is illuminated a bit in a separate source. There is a README

file in the root of the h-node’s source code. According to the file, the user should use a

web server such as Apache in order to use his or her own version of h-node.

This means that the user must use a web server to view his or her changed version of h-

node so that the user can verify that their changes work correctly before committing

them. The file does not, however, clearly specify how the user could do this. An

inexperienced user who just wishes to correct a simple typo on a static portion of h-node

is likely to give up at this point. Short and simplified instructions of the whole process

would help a lot.

H-node needs coherent documentation so that every user regardless of his or her level of

skillfulness can participate in the development. Every new contributor is welcome.

Improving the documentation is one of the most important things the h-node users can

do to improve the state of the project.

6.4 Statistics

H-node can provide the Free Software community clear figures about GNU/Linux’s

hardware compatibility with Free Software. All the necessary information is in the

database. All that needs to be done is to process this information and present it to the

community in a usable form. A new Statistics section would be ideal for this purpose.

The Statistics section should have figures and charts about hardware compatibility. At

least the most important hardware categories like laptops, Wi-Fi cards, video cards and

printers should be covered. The charts should be simple and easy to understand like the

pie chart presented in Figure 32.

73

The process of generating the information would be similar to what has been done with

the scripts used in this final project. Only this time the information would be always up

to date since it is fetched right from the database itself and processed automatically

whenever a user moves to the Statistics section. The charts would be generated from

scratch each time. One example is shown in Figure 36.

Figure 36. Example chart for the Statistics section

The Statistics section would not be useful only to the Free Software community. The

whole GNU/Linux community could also use these figures and charts because most

GNU/Linux distributions have the same Free Software drivers and firmware in the

Linux kernel as the free distributions do as explained in section 2.7 H-node.

The Free Software community needs the hardware compatibility information which h-

node can provide. Now, the state of hardware compatibility is based on user’s

experience. After implementing the Statistics section, it would be based on definite

figures.

74

At the moment of writing, the supply of devices was too small to give a reliable general

picture of the GNU/Linux’s hardware compatibility. The information will not be

reliable until more devices are reported to the database. It will improve with time.

However, it would be useful right away for the users of h-node in monitoring the state

of the database.

75

7 CONCLUSIONS

This final project had two objectives. The first was to introduce new users to h-node by

writing and distributing this project. The second was to participate in the development

of the h-node project by extending the hardware database and contributing to the h-

node.org website.

The first objective was partly reached by completing this project. Distributing this final

project to new users will start after this project is published. It will be introduced to

various Free Software organizations and groups around the world, such as the Free

Software Foundation and its sister organizations and the user communities of the

completely free GNU/Linux distributions. With their help, this project can reach many

more new users than the author could possibly reach by himself.

The second objective was reached and the results are encouraging. H-node’s hardware

database was extended greatly during this project. H-node.org website was also

improved by submitting bug reports and feature requests, removing spam and blocking

spam posting users and writing the FAQ section.

H-node’s flaws were also discussed in this final project. It is important that the h-node

community recognizes these flaws and can improve h-node to surpass them. This

project helps the community in this task by identifying some of the flaws and

suggesting new useful features to be implemented which can benefit the h-node project

greatly.

This final project managed to support the h-node project also by introducing the Free

Software philosophy, GNU/Linux operating systems and the history behind them to

those users who are not familiar with them. This helps them to understand why Free

Software is important and invites them to join the community. H-node project benefits

from a lively community and the community benefits from a growing h-node project.

76

The author of this final project is very happy with the achieved results and feels

confident that the h-node project will continue to develop into an important part of the

Free Software community.

77

8 REFERENCES

Ewing, Larry & Budig, Simon & Gerwinski, Anja. 1996. Tux. Retrieved 18 March 2013

 < http://commons.wikimedia.org/wiki/File:Tux.svg>

Gallo, Antonio. 2010. H-node logo. Retrieved 18 March 2013

 < http://www.h-node.org>

Gallo, Antonio, Main developer, H-node. h-node moderator and administrator. E-mail

 tonicucoz@yahoo.com 28 September 2012.

Gallo, Antonio, Main developer, H-node. Questions for final thesis. E-mail

 tonicucoz@yahoo.com 6 February 2013.

Gallo, Antonio, Main developer, H-node. Questions for final thesis. E-mail

 tonicucoz@yahoo.com 27 March 2013.

Gallo, Antonio, Main developer, H-node. Questions for final thesis. E-mail

 tonicucoz@yahoo.com 15 April 2013.

GNU Operating System 2013. Free GNU/Linux distributions. Retrieved 18 March 2013

 <http://www.gnu.org/distros/free-distros.html>

H-node.org 2013a. Retrieved 28 March 2013

 <http://www.h-node.org>

H-node.org 2013b. Retrieved 1 May 2013

 <http://www.h-node.org>

Nemeth, Evi & Snyder Garth & Hein, Trent 2008. Linux Administration Handbook.

 Massachusetts: Prentice Hall

Pérez, Rubén Rodríguez. 2009. Freedo. Retrieved 18 March 2013

 < http://en.wikipedia.org/wiki/File:Freedo.svg>

Stallman, Richard 1983. Initial Announcement. Retrieved March 2 2013

 < http://www.gnu.org/gnu/initial-announcement.html>

Stallman, Richard 2010. Free Software Free Society. USA: SoHo Books

Suvasa, Etienne & Gerwinsky, Peter. GNU Head. Retrieved 18 March 2013

 <http://www.gnu.org/graphics/gerwinski-gnu-head.png>

Trisquel GNU/Linux 2013. Retrieved 17 April 2013

 <http://www.trisquel.info>

Trisquel GNU/Linux 6.0 live-CD 2013. Retrieved 2 April 2013

 <http://www.trisquel.info>

Torvalds, Linus 1991. RELEASE NOTES FOR LINUX v0.12. Retrieved March 2 2013

 <https://www.kernel.org/pub/linux/kernel/Historic/old-versions/RELNOTES-0.12>

Williams, Sam Stallman, Richard 2010. Free as in Freedom (2.0): Richard Stallman

 and the Free Software Revolution. Boston: Free Software Foundation

http://commons.wikimedia.org/wiki/File:Tux.svg
http://www.h-node.org/
mailto:tonicucoz@yahoo.com
mailto:tonicucoz@yahoo.com
mailto:tonicucoz@yahoo.com
mailto:tonicucoz@yahoo.com
http://www.gnu.org/distros/free-distros.html
http://www.h-node.org/
http://www.h-node.org/
http://en.wikipedia.org/wiki/File:Freedo.svg
http://www.gnu.org/gnu/initial-announcement.html
http://www.gnu.org/graphics/gerwinski-gnu-head.png
http://www.trisquel.info/
http://www.trisquel.info/
https://www.kernel.org/pub/linux/kernel/Historic/old-versions/RELNOTES-0.12

78

LIST OF APPENDICES

Appendix 1. HARDWARE CONTRIBUTIONS SCRIPT

Appendix 2. ADMIN CONTRIBUTIONS SCRIPT

Appendix 3. MODERATOR CONTRIBUTIONS SCRIPT

Appendix 4. NETBOOK COMPATIBILITY SCRIPT

Appendix 5. OUTPUT OF HARDWARE CONTRIBUTIONS SCRIPT

Appendix 6. OUTPUT OF ADMIN CONTRIBUTIONS SCRIPT

Appendix 7. OUTPUT OF MODERATOR CONTRIBUTIONS SCRIPT

Appendix 8. OUTPUT OF NETBOOK COMPATIBILITY SCRIPT

APPENDIX 1 1 (7)

HARDWARE CONTRIBUTIONS SCRIPT

#!/bin/bash

hardware-contributions.sh

Copyright (C) 2013 Matti Lammi

This program is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see
<http://www.gnu.org/licenses/>.

This script will produce information about my (lammi87) hardware
related contributions to h-node in human readable form. It will use
tools commonly found in GNU/Linux operating system distributions
and two source files to do this. Results will be saved to a file
and also displayed immediately.

The source files are text files consisting on several one line
long entries of data. The data is copied from two of h-node's
lists of hardware related contributions. The first one [1] is a
list of actions carried out by all users. The second one [2] is a
different kind of list containing my actions alone. Both of these
lists can be accessed by anyone:

[1] http://h-node.org/special/modifications/en
[2] http://h-node.org/meet/hardware/en/lammi87

The first list [1] is rather long, so I have included only the
entries starting from the day when I first started reporting
devices to h-node continuing to the present day in order to narrow
it down.

I had to use two separate sources because neither one alone did not
include all the information I wanted. I also had to make sure that
the source files I made based on those lists contained only the
data I needed and nothing else. Anything extra like empty lines or
comments might have an effect to the results since this script will
search and count lines in various ways.

I have used many line breaks in this script so that I can keep the
layout clean when adding this script to my final thesis as an
appendix.

APPENDIX 1 2 (7)

Please note that the output of this script may not be 100% accurate.
I think, however, that the results are accurate enough.

SOURCE FILES

[1] File name: source-hardware-1
Date for first entry: 3 May 2012
Date for last entry: 26 March 2013

[2] File name: source-hardware-2
Date for first entry: 3 May 2012
Date for last entry: 26 March 2013

Print instructions.

"echo" program's -e option allows special characters like
\n to be implemented.
\n = new line
\t = tab
echo -e "H-node script: Hardware contributions\n"
echo -e "First argument:\t\t Source file [1]"
echo -e "Second argument: \t Source file [2]"
echo -e "Third argument: \t Output file\n"

Quit if source file [1] is not given.

Check if first argument is null.
! = not
-n = not null
if [! -n "$1"]
then
echo "ERROR: No source [1] given. Read source code for more info."
exit 1
fi

Check if source [1] does not exist.
! = not
-f = file exists
if [! -f "$1"]
then
echo "ERROR: Source [1] not found. Read source code for more info."
exit 1
fi

Quit if source file [2] is not given.

Check if second argument is null.
! = not
-n = not null
if [! -n "$2"]
then
echo "ERROR: No source [2] given. Read source code for more info."

APPENDIX 1 3 (7)

exit 1
fi

Check if source [2] does not exist.
! = not
-f = file exists
if [! -f "$2"]
then
echo "ERROR: Source [2] not found. Read source code for more info."
exit 1
fi

Quit if output file is not given.

Check if third argument is null.
! = not
-n = not null
if [! -n "$3"]
then
echo "ERROR: No output file given. Read source code for more info."
exit 1
fi

Create output file.

\n = new line
touch $3
echo -e "Output file created.\n\n"

Define table format and lines

I will print the data processed from the source files into easy
to read tables. I use "printf" instead of "echo" because it has
more options to format the output. I'll define a format for the
tables so I can easily use it to print several tables and keep
their formatting unanimous. The format is a 35 character long space
followed by eight character long space and a new line character.
I added the new line character because "printf" does not include
it to its output by default. The first space will align characters
printed into it to the left. The other space will align its content
to right.
%s = string
NN = reserved character space in %NNs
- = alignment to left
\n = new line
TABLE_FORMAT="%-40s%8s\n"

I'll be using two kinds of "lines" of characters to make the
output look more readable. I'll define them here.
THICK_LINE="==="
THIN_LINE="---"

Find out my hardware contributions

APPENDIX 1 4 (7)

%s = string
\n = new line
echo "Hardware contributions:" > $3
printf "%s\n\n" $THICK_LINE >> $3

Find out how many new pieces of hardware I have added:

Inspect all lines of the source file [1], get only those which
mention me and the word "inserted", count them and print the
result.
NUM=$() = Run code defined in brackets and save result to NUM.
Printf's syntax: printf <format> <argument>
NUM=$(cat $1 | grep lammi87 | grep inserted | wc -l)
printf $TABLE_FORMAT "New hardware inserted by me:" $NUM >> $3

Find out how many updates I have made to existing hardware
entries:

Inspect all lines of the source file [1], get only those which
mention me and the word "updated", count them and print the
result.
NUM=$() = Run code defined in brackets and save result to NUM.
Printf's syntax: printf <format> <argument>
NUM=$(cat $1 | grep lammi87 | grep updated | wc -l)
printf $TABLE_FORMAT "Old hardware updated by me:" $NUM >> $3

Find out how many hardware related contributions I have made
in total:

Inspect all lines of the source file [1], get only those which
mention me, count them and print the result.
Printf's syntax: printf <format> <argument>
NUM=$() = Run code defined in brackets and save result to NUM.
%s = string
\n = new line
printf "%s\n" $THIN_LINE >> $3
NUM=$(cat $1 | grep lammi87 | wc -l)
printf $TABLE_FORMAT "All my contributions in total:" $NUM >> $3

Find out how many hardware related contributions others
have made in total:

Inspect all lines of the source file [1], get only those which
do not mention me, count them and print the result.
NUM=$() = Run code defined in brackets and save result to NUM.
Printf's syntax: printf <format> <argument>
NUM=$(cat $1 | grep -v lammi87 | wc -l)
printf $TABLE_FORMAT "Other's contributions in total:" $NUM >> $3

Find out how many hardware related contributions there
are in total:

Inspect all lines of the source file [1], count them and print
the result.
Printf's syntax: printf <format> <argument>
NUM=$() = Run code defined in brackets and save result to NUM.

APPENDIX 1 5 (7)

%s = string
\n = new line
printf "%s\n" $THIN_LINE >> $3
NUM=$(cat $1 | wc -l)
printf $TABLE_FORMAT "All contributions in total:" $NUM >> $3

Find out how many contributions I did per month.

For each year, write an entry to output file. For each
month within that year, write an entry to output file and separately
count how many devices I have updated, inserted and contributed in
total (Each year is searched from the end of each line from the
source file [1] due to "$" after the YEAR variable). Also, count
total values for each three categories of contributions for each
year and print it.
Printf's syntax: printf <format> <argument>
%s = string
- = alignment to left
\n = new line
\ = line break
NUM=$() = Run code defined in brackets and save result to NUM.
The "let" command enables arithmetic operations on variables.

I'll be using another kind of table format for these month tables.
NEW_TABLE_FORMAT="%-18s%10s%10s%10s\n"

echo -e "\n\nMy contributions per month:" >> $3
printf "%s\n" $THICK_LINE >> $3

for YEAR in 2012 2013
do

 printf "\n$NEW_TABLE_FORMAT" "Year: $YEAR" "Updated" \
 "Inserted" "Total" >> $3
 printf "%s\n" $THIN_LINE >> $3

 for MONTH in January February March April May June July August \
 September October November December
 do

 UPDATED=$(cat $1 | grep lammi87 | grep updated |\
 grep $YEAR$ | grep $MONTH | wc -l)

 INSERTED=$(cat $1 | grep lammi87 | grep inserted |\
 grep $YEAR$ | grep $MONTH | wc -l)

 TOTAL=$(cat $1 | grep lammi87 | grep $YEAR$ |\
 grep $MONTH | wc -l)
 printf $NEW_TABLE_FORMAT $MONTH $UPDATED $INSERTED\
 $TOTAL >> $3
 let "UPDATED_IN_MONTH=$UPDATED_IN_MONTH+$UPDATED"
 let "INSERTED_IN_MONTH=$INSERTED_IN_MONTH+$INSERTED"
 let "TOTAL_IN_MONTH=$TOTAL_IN_MONTH+$TOTAL"

 done

APPENDIX 1 6 (7)

 printf "%s\n" $THIN_LINE >> $3
 printf $NEW_TABLE_FORMAT "Total:" $UPDATED_IN_MONTH\
 $INSERTED_IN_MONTH $TOTAL_IN_MONTH >> $3

 UPDATED=0
 INSERTED=0
 TOTAL=0
 UPDATED_IN_MONTH=0
 INSERTED_IN_MONTH=0
 TOTAL_IN_MONTH=0

done

Find out my contributions per hardware class per device.

For each hardware class, get a device name from source file [2] and
count how many times it can be found in the source file [1] with my
user name in it. Then count how many update and insert type of
contributions I have made. Also count the total number of
contributions. Do this for each device in each hardware class.
Count total values of all contribution types. Print the results.

sed is a line editor. I use it to cut out unnecessary stuff from
what I get from source file [2].
Printf's syntax: printf <format> <argument>
\n = new line
%s = string
\ = line break
-n = not null (if statement)
NUM=$() = Run code defined in brackets and save result to NUM.
echo -e "\n\nMy contributions per hardware class:" >> $3
printf "%s\n\n" $THICK_LINE >> $3

printf "$NEW_TABLE_FORMAT" "Class" "Updated" \
 "Inserted" "Total" >> $3
printf "%s\n" $THIN_LINE >> $3

for CLASS in notebook videocard soundcard wifi ethernet-card \
sd-card-reader webcam bluetooth acquisition-card 3G-card \
host-controller fingerprint-reader RAID-adapter modem printer \
scanner
do

 DEVICE_NAMES=$(sed -rn 's/^'"$CLASS"'\s+(.+)\s+/\1/p' "$2")

 if [-n "$DEVICE_NAMES"]
 then

 UPDATED=$(grep -F "$DEVICE_NAMES" $1 | grep "lammi87" |\
 grep -c updated)
 INSERTED=$(grep -F "$DEVICE_NAMES" $1 | grep "lammi87" |\
 grep -c inserted)
 TOTAL=$(grep -F "$DEVICE_NAMES" $1 | grep -c "lammi87")

 else

APPENDIX 1 7 (7)

 UPDATED=0
 INSERTED=0
 TOTAL=0

 fi

 printf $NEW_TABLE_FORMAT $CLASS $UPDATED $INSERTED $TOTAL >> $3
 let "FINAL_UPDATED=$FINAL_UPDATED+$UPDATED"
 let "FINAL_INSERTED=$FINAL_INSERTED+$INSERTED"
 let "FINAL_TOTAL=$FINAL_TOTAL+$TOTAL"

done

printf "%s\n" $THIN_LINE >> $3
printf $NEW_TABLE_FORMAT "Total:" $FINAL_UPDATED\
 $FINAL_INSERTED $FINAL_TOTAL >> $3

Show results.

cat $3

Quit

\n = new line
echo -e "\nAll done.\n"
exit 0

APPENDIX 2 1 (5)

ADMIN CONTRIBUTIONS SCRIPT

#!/bin/bash

admin-contributions.sh

Copyright (C) 2013 Matti Lammi

This program is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see
<http://www.gnu.org/licenses/>.

This script will produce information about my (lammi87)
contributions to h-node as an administrator in human readable form.
It will use tools commonly found in GNU/Linux operating system
distributions and a source file to do this. Results will be saved
to a file and also displayed immediately.

The source file is a text file consisting on several one line long
entries of data. The data is copied from h-node's list of actions
carried out by administrators (available only to administrators and
h-node's main developer) where a new entry is made every time a
user who has administrational rights carries out an action which
only administrators can do.

This list is rather long, so I have narrowed it down by filtering
out every entry about other administrator's actions using a search
filter found in the list's page, thus keeping my source file short.

I have used many line breaks in this script so that I can keep the
layout clean when adding this script to my final thesis as an
appendix.

Please note that the output of this script may not be 100% accurate.
I think, however, that the results are accurate enough.

SOURCE FILE
File name: source-admin
Date of first entry: 6 October 2012
Date of last entry: 22 March 2013

APPENDIX 2 2 (5)

Print instructions.

Echo program's -e option allows special characters like
\n to be implemented.
\n = new line
\t = tab
echo -e "H-node script: Actions as administrator\n"
echo -e "First argument:\t\t Source file"
echo -e "Second argument: \t Output file\n"

Quit if source file is not found.

Check if first argument is null.
! = not
-n = not null
if [! -n "$1"]
then
echo "ERROR: No source given. Read source code for more info."
exit 1
fi

Check if source does not exist.
! = not
-f = file exists
if [! -f "$1"]
then
echo "ERROR: Source not found. Read source code for more info."
exit 1
fi

Quit if output file is not given.

Check if second argument is null.
! = not
-n = not null
if [! -n "$2"]
then
echo "ERROR: No output file given. Read source code for more info."
exit 1
fi

Create output file.

\n = new line
touch $2
echo -e "Output file created.\n\n"

Define table format and lines

I will print the data processed from the source files into easy
to read tables. I use "printf" instead of "echo" because it has
more options to format the output. I'll define a format for the
tables so I can easily use it to print several tables and keep

APPENDIX 2 3 (5)

their formatting unanimous. The format is a 35 character long space
followed by eight character long space and a new line character.
I added the new line character because "printf" does not include
it to its output by default. The first space will align characters
printed into it to the left. The other space will align its content
to right.
%s = string
NN = reserved character space in %NNs
- = alignment to left
\n = new line
TABLE_FORMAT="%-35s%8s\n"

I'll be using two kinds of "lines" of characters to make the
output look more readable. I'll define them here.
THICK_LINE="=="
THIN_LINE="--"

Find out my actions as an admin:

%s = string
/n = new line
echo "Actions as administrator:" > $2
printf "%s\n\n" $THICK_LINE >> $2

Find out how many users I have blocked:

Inspect all lines of the source file, get only those which have
my username followed by one or more spaces and the word "block",
count them and print the result.
NUM=$() = Run code defined in brackets and save result to NUM.
\s = any white space character (regex)
* = preceding character zero or more times (regex)
NUM=$(cat $1 | grep "lammi87\s*block" | wc -l)
printf $TABLE_FORMAT "Users blocked by me:" $NUM >> $2

Find out how many devices I have deleted:

Inspect all lines of the source file, get only those which
have my username followed by one or more spaces and the words
"perm deleted", count them and print the result.
NUM=$() = Run code defined in brackets and save result to NUM.
\s = any white space character (regex)
* = preceding character zero or more times (regex)
NUM=$(cat $1 | grep "lammi87\s*perm deleted" | wc -l)
printf $TABLE_FORMAT "Devices deleted by me:" $NUM >> $2

Find out how many devices I have hidden:

Inspect all lines of the source file, get only those which
have my username followed by one or more spaces and the word
"hide", count them and print the result.
NUM=$() = Run code defined in brackets and save result to NUM.
\s = any white space character (regex)
* = preceding character zero or more times (regex)
NUM=$(cat $1 | grep "lammi87\s*hide" | wc -l)
printf $TABLE_FORMAT "Devices hidden by me:" $NUM >> $2

APPENDIX 2 4 (5)

Find out how many actions I have made in total:

Inspect all lines of the source file, count them and print
the result.
%s = string
\n = new line
NUM=$() = Run code defined in brackets and save result to NUM.
printf "%s\n" $THIN_LINE >> $2
NUM=$(cat $1 | wc -l)
printf $TABLE_FORMAT "All my actions in total:" $NUM >> $2

Find out how many actions I did per month.

For each year, write an entry to output file. For each
month, write an entry to output file including how many
actions I have made in that particular month. Also, count
a total number of contributions after each year and print it.
The "let" command enables arithmetic operations on variables.
\n = new line
%s = string
\ = line break
NUM=$() = Run code defined in brackets and save result to NUM.
echo -e "\n\nMy actions per month:" >> $2
printf "%s\n" $THICK_LINE >> $2

for YEAR in 2012 2013
do

 printf "\n$TABLE_FORMAT" "Year:" $YEAR >> $2
 printf "%s\n" $THIN_LINE >> $2

 for MONTH in January February March April May June July August \
 September October November December
 do

 NUM=$(cat $1 | grep "$MONTH $YEAR" | wc -l)
 printf $TABLE_FORMAT $MONTH $NUM >> $2
 let "TOTAL=$TOTAL+$NUM"

 done

 printf "%s\n" $THIN_LINE >> $2
 printf $TABLE_FORMAT "Total:" $TOTAL >> $2
 TOTAL=0

done

Show results.

cat $2

Quit

APPENDIX 2 5 (5)

\n = new line
echo -e "\nAll done.\n"
exit 0

APPENDIX 3 1 (4)

MODERATOR CONTRIBUTIONS SCRIPT

#!/bin/bash

moderator-contributions.sh

Copyright (C) 2013 Matti Lammi

This program is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see
<http://www.gnu.org/licenses/>.

This script will produce information about my (lammi87)
contributions to h-node as a moderator in human readable form. It
will use tools commonly found in GNU/Linux operating system
distributions and a source file to do this. Results will be saved
to a file and also displayed immediately.

The source file is a text file consisting on several one line long
entries of data. The data is copied from h-node's list of actions
carried out by moderators (available only to moderators and
h-node's main developer) where a new entry is made every time a
user who has moderator's rights carries out an action which only
moderators can do.

This list is rather long, so I have narrowed it down by filtering
out every entry about other moderator's actions using a search
filter found in the list's page, thus keeping my source file short.

I have used many line breaks in this script so that I can keep the
layout clean when adding this script to my final thesis as an
appendix.

Please note that the output of this script may not be 100% accurate.
I think, however, that the results are accurate enough.

SOURCE FILE
File name: source-moderator
Date of first entry: 2 October 2012
Date of last entry: 22 March 2013

APPENDIX 3 2 (4)

Print instructions.

Echo program's -e option allows special characters like
\n to be implemented.
\n = new line
\t = tab
echo -e "H-node script: Actions as moderator\n"
echo -e "First argument:\t\t\tSource file"
echo -e "Second argument: \t\tOutput file\n"

Quit if source file is not found.

Check if first argument is null.
! = not
-n = not null
if [! -n "$1"]
then
echo "ERROR: No source given. Read source code for more info."
exit 1
fi

Check if source does not exist.
! = not
-f = file exists
if [! -f "$1"]
then
echo "ERROR: Source not found. Read source code for more info."
exit 1
fi

Quit if output file is not given.

Check if second argument is null.
! = not
-n = not null
if [! -n "$2"]
then
echo "ERROR: No output file given. Read source code for more info."
exit 1
fi

Create output file.

\n = new line
touch $2
echo -e "Output file created.\n\n"

Define table format and lines

I will print the data processed from the source files into easy
to read tables. I use "printf" instead of "echo" because it has
more options to format the output. I'll define a format for the
tables so I can easily use it to print several tables and keep

APPENDIX 3 3 (4)

their formatting unanimous. The format is a 35 character long space
followed by eight character long space and a new line character.
I added the new line character because "printf" does not include
it to its output by default. The first space will align characters
printed into it to the left. The other space will align its content
to right.
%s = string
NN = reserved character space in %NNs
- = alignment to left
\n = new line
TABLE_FORMAT="%-35s%8s\n"

I'll be using two kinds of "lines" of characters to make the
output look more readable. I'll define them here.
THICK_LINE="=="
THIN_LINE="--"

Find out my actions as moderator:

%s = string
\n = new line
echo "Actions as moderator:" > $2
printf "%s\n\n" $THICK_LINE >> $2

Find out how many issues I have hidden:

Inspect all lines of the source file, get only those which
have my username followed by one or more spaces and the
word "hide", count them and print the result.
NUM=$() = Run code defined in brackets and save result to NUM.
\s = any white space character (regex)
* = preceding character zero or more times (regex)
NUM=$(cat $1 | grep "lammi87\s*hide" | wc -l)
printf $TABLE_FORMAT "Issues hidden by me:" $NUM >> $2

Find out how many issues I have closed:

Inspect all lines of the source file, get only those which
have my username followed by one or more spaces and the word
"close", count them and print the result.
NUM=$() = Run code defined in brackets and save result to NUM.
\s = any white space character (regex)
* = preceding character zero or more times (regex)
NUM=$(cat $1 | grep "lammi87\s*close" | wc -l)
printf $TABLE_FORMAT "Issues closed by me:" $NUM >> $2

Find out how many actions I have made in total:

Inspect all lines of the source file, count them and print
the result.
%s = string
\n = new line
NUM=$() = Run code defined in brackets and save result to NUM.
printf "%s\n" $THIN_LINE >> $2
NUM=$(cat $1 | wc -l)
printf $TABLE_FORMAT "Total:" $NUM >> $2

APPENDIX 3 4 (4)

Find out how many actions I did per month.

For each year, write an entry to output file. For each
month, write an entry to output file including how many
actions I have made in that particular month. The "let"
command enables arithmetic operations on variables.
\n = new line
%s = string
\ = line break
NUM=$() = Run code defined in brackets and save result to NUM.
echo -e "\n\nMy actions per month:" >> $2
printf "%s\n" $THICK_LINE >> $2

for YEAR in 2012 2013
do

 printf "\n$TABLE_FORMAT" "Year:" $YEAR >> $2
 printf "%s\n" $THIN_LINE >> $2

 for MONTH in January February March April May June July August \
 September October November December
 do

 NUM=$(cat $1 | grep "$MONTH $YEAR" | wc -l)
 printf $TABLE_FORMAT $MONTH $NUM >> $2
 let "TOTAL=$TOTAL+$NUM"

 done

 printf "%s\n" $THIN_LINE >> $2
 printf $TABLE_FORMAT "Total:" $TOTAL >> $2
 TOTAL=0

done

Show results.

cat $2

Quit

\n = new line
echo -e "\nAll done.\n"
exit 0

APPENDIX 4 1 (4)

NETBOOK COMPATIBILITY SCRIPT

#!/bin/bash

netbook-compatibility-levels.sh

Copyright (C) 2013 Matti Lammi

This program is free software: you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see
<http://www.gnu.org/licenses/>.

This script will produce information about the compatibility levels
of netbooks found in the h-node's hardware database with 100% free
GNU/Linux distributions endorsed by the Free Software Foundation.
The script will use tools commonly found in GNU/Linux distributions
and a source file to do this. Results will be saved to a file and
also displayed immediately.

The source file is an XML file which contains detailed information
about all the notebooks found in the database. The source file [1]
can be found in the h-node's download page [2]. Anyone is free to
copy, modify, publish, use, sell, or distribute the file's content
for any purpose, commercial or non-commercial, and by any means.
For more details, please check the license [3].

[1] http://h-node.org/download/notebooks/en
[2] http://h-node.org/download/index/en
[3] http://creativecommons.org/publicdomain/zero/1.0/

Netbook are given different compatibility levels in h-node depending
on their compatibility with free software. From highest to lowest,
the levels are; A, B, C, D and E. In simple terms, they are as
follows:

A-Platinum - All devices work with full performance
B-Gold - All devices work but not with full performance
C-Silver - One device is not supported
D-Bronze - More than one device is not supported
E-Garbage - Netbook is not usable with free software

I have used many line breaks in this script so that I can keep the
layout clean when adding this script to my final thesis as an

APPENDIX 4 2 (4)

appendix.

Please note that the output of this script may not be 100% accurate.
I think, however, that the results are accurate enough.

SOURCE FILE

File name: source-netbook-compatibility-levels.xml
Download date: 26 March 2013

Print instructions.

"echo" program's -e option allows special characters like
\n to be implemented.
\n = new line
\t = tab
echo -e "H-node script: Netbook compatibility levels\n"
echo -e "First argument:\t\t Source file"
echo -e "Second argument: \t Output file\n"

Quit if source file [1] is not given.

Check if first argument is null.
! = not
-n = not null
if [! -n "$1"]
then
echo "ERROR: No source given. Read source code for more info."
exit 1
fi

Check if source [1] does not exist.
! = not
-f = file exists
if [! -f "$1"]
then
echo "ERROR: Source not found. Read source code for more info."
exit 1
fi

Quit if output file is not given.

Check if second argument is null.
! = not
-n = not null
if [! -n "$2"]
then
echo "ERROR: No output file given. Read source code for more info."
exit 1
fi

APPENDIX 4 3 (4)

Create output file.

\n = new line
touch $2
echo -e "Output file created.\n\n"

Define table format and lines

I will print the data processed from the source files into easy
to read tables. I use "printf" instead of "echo" because it has
more options to format the output. I'll define a format for the
tables so I can easily use it to print several tables and keep
their formatting unanimous. The format is a 16 character long space
followed by 17 and 20 character long space and a new line character.
I added the new line character because "printf" does not include
it to its output by default. All character spaces will align
characters printed into them to the left.
%s = string
NN = reserved character space in %NNs
- = alignment to left
\n = new line
TABLE_FORMAT="%-16s%-17s%-20s\n"

I'll be using two kinds of "lines" of characters to make the
output look more readable. I'll define them here.
THICK_LINE="=="
THIN_LINE="--"

Find out how compatible the netbooks are:

printf "$TABLE_FORMAT" "Level" "Amount" "Percentage" > $2
printf "%s\n\n" $THICK_LINE >> $2

Find out how many netbooks there are and save the result to a
variable. Run a loop to check each compatibility level separately
to find out how many netbooks have a particular compatibility
level. Format the result to a nice table. The "bc" program is used
for math when a floating point is required and "let" when simple
operations with variables are performed. Variables used are as
follows:

TOTAL total amount of netbooks in the database
CALC_TOTAL total amount of netbooks calculated from each
compatibility level
NETBOOKS amount of netbooks with a certain
compatibility level
PERCENTAGE netbooks of one compatibility level compared
to total (not accurate, but good enough)
CALC_PERCENTAGE netbooks of all compatibility levels
compared to total

%f = float
=> %NN.Zf = reserve a space of NN characters and input a float
type number to that space defined in <argument>
aligning right and define the number of decimal

APPENDIX 4 4 (4)

digits in Z.
- = alignment to left
\n = new line

TOTAL=$(cat $1 | grep "<compatibility>" | wc -l)
CALC_TOTAL=0
PERCENTAGE=0

for LEVEL in A-platinum B-gold C-silver D-bronze E-garbage
do

 NETBOOKS=$(cat $1 | grep "<compatibility>" | grep $LEVEL | wc -l)
 PERCENTAGE=$(echo "scale=4; ($NETBOOKS/$TOTAL)*100" | bc)
 printf "%-15s%7s%21.1f\n" $LEVEL $NETBOOKS $PERCENTAGE >> $2
 let "CALC_TOTAL=$CALC_TOTAL+$NETBOOKS"

done

CALC_PERCENTAGE=$(echo "scale=3; ($CALC_TOTAL/$TOTAL)*100" | bc)
printf "%s\n" $THIN_LINE >> $2
printf "%-15s%7s%21.0f\n" "Total:" $CALC_TOTAL $CALC_PERCENTAGE >> $2

Show results.

cat $2

Quit

\n = new line
echo -e "\nAll done.\n"
exit 0

APPENDIX 5 1 (2)

OUTPUT OF HARDWARE CONTRIBUTIONS SCRIPT

Hardware contributions:
===

New hardware inserted by me: 247
Old hardware updated by me: 483

All my contributions in total: 730
Other's contributions in total: 646

All contributions in total: 1376

My contributions per month:
===

Year: 2012 Updated Inserted Total

January 0 0 0
February 0 0 0
March 0 0 0
April 0 0 0
May 12 7 19
June 35 26 61
July 6 0 6
August 29 2 31
September 150 51 201
October 113 65 178
November 74 46 120
December 44 34 78

Total: 463 231 694

Year: 2013 Updated Inserted Total

January 15 14 29
February 4 0 4
March 1 2 3
April 0 0 0
May 0 0 0
June 0 0 0
July 0 0 0
August 0 0 0
September 0 0 0
October 0 0 0
November 0 0 0
December 0 0 0

Total: 20 16 36

My contributions per hardware class:
===

APPENDIX 5 2 (2)

Class Updated Inserted Total

notebook 204 117 321
videocard 68 60 128
soundcard 54 16 70
wifi 51 10 61
ethernet-card 54 19 73
sd-card-reader 11 6 17
webcam 6 4 10
bluetooth 0 0 0
acquisition-card 3 3 6
3G-card 6 2 8
host-controller 2 1 3
fingerprint-reader 1 0 1
RAID-adapter 0 0 0
modem 3 0 3
printer 15 8 23
scanner 3 1 4

Total: 481 247 728

APPENDIX 6 1 (1)

OUTPUT OF ADMIN CONTRIBUTIONS SCRIPT

Actions as administrator:
==

Users blocked by me: 4
Devices deleted by me: 6
Devices hidden by me: 1
--
All my actions in total: 11

My actions per month:
==

Year: 2012
--
January 0
February 0
March 0
April 0
May 0
June 0
July 0
August 0
September 0
October 4
November 2
December 3
--
Total: 9

Year: 2013
--
January 1
February 0
March 1
April 0
May 0
June 0
July 0
August 0
September 0
October 0
November 0
December 0
--
Total: 2

APPENDIX 7 1 (1)

OUTPUT OF MODERATOR CONTRIBUTIONS SCRIPT

Actions as moderator:
==

Issues hidden by me: 5
Issues closed by me: 8
--
Total: 13

My actions per month:
==

Year: 2012
--
January 0
February 0
March 0
April 0
May 0
June 0
July 0
August 0
September 0
October 5
November 3
December 2
--
Total: 10

Year: 2013
--
January 2
February 0
March 1
April 0
May 0
June 0
July 0
August 0
September 0
October 0
November 0
December 0
--
Total: 3

APPENDIX 8 1 (1)

OUTPUT OF NETBOOK COMPATIBILITY SCRIPT

Level Amount Percentage
==

A-platinum 84 26.8
B-gold 67 21.3
C-silver 118 37.6
D-bronze 34 10.8
E-garbage 11 3.5
--
Total: 314 100

