Environmental Policy vs. the Reality of Greenhouse Gas Emissions from Top Emitting Countries
Abstract
:1. Introduction
2. Review Methodology
3. Results
3.1. The Formulation of Environmental Policy
- China
- 2.
- USA
- 3.
- EU27 UK
- 4.
- India
- 5.
- Russia
- 6.
- Japan
- 7.
- Iran
3.2. The Reality of Environmental Policy
4. Discussion
4.1. Analysis of EU27 UK
4.1.1. EU27 UK Member Countries: Evolution from 1990 to Present
4.1.2. Industrial Development and Heavy Industry Concentration in EU Member States
4.1.3. Relocation of Industrial Activities
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UN. United Nations Framework Convention on Climate Change; UN: New York, NY, USA, 1992; p. 25. [Google Scholar]
- Ministerio para la Transición Ecológica y el Reto Demográfico, Protocolo de Kyoto. Available online: https://www.miteco.gob.es/es/cambio-climatico/temas/el-proceso-internacional-de-lucha-contra-el-cambio-climatico/naciones-unidas/protocolo-kioto.aspx (accessed on 1 June 2024).
- UNFCC. Doha Climate Change Conference—November 2012. Available online: https://unfccc.int/process-and-meetings/conferences/past-conferences/doha-climate-change-conference-november-2012/doha-climate-change-conference-november-2012 (accessed on 1 June 2024).
- Ministerio para la Transición Ecológica y el Reto Demográfico. Acuerdo de París. Available online: https://www.miteco.gob.es/es/cambio-climatico/temas/el-proceso-internacional-de-lucha-contra-el-cambio-climatico/naciones-unidas/elmentos-acuerdo-paris.aspx (accessed on 1 June 2024).
- European Commission: Joint Research Centre; Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Solazzo, E.; Monforti-Ferrario, F.; Olivier, J.; Vignati, E. Fossil CO2 and GHG Emissions of All World Countries: 2020 Report; Publications Office: Luxembourg, 2020; Available online: https://edgar.jrc.ec.europa.eu/report_2020 (accessed on 9 October 2024).
- Portillo Juan, N.; Negro Valdecantos, V.; del Campo, J.M. A New Climate Change Analysis Parameter: A Global or a National Approach Dilemma. Energies 2022, 15, 1522. [Google Scholar] [CrossRef]
- Forster, P.M.; Forster, H.I.; Evans, M.J.; Gidden, M.J.; Jones, C.D.; Keller, C.A.; Lamboll, R.D.; Quere, C.L.; Rogelj, J.; Rosen, D.; et al. Current and future global climate impacts resulting from COVID-19. Nat. Clim. Change 2020, 10, 913. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, P.; Raizada, P.; Hussain, C.M. Impact of COVID-19 on greenhouse gases emissions: A critical review. Sci. Total Environ. 2022, 806, 150349. [Google Scholar] [CrossRef] [PubMed]
- IEA (2021), Global Energy Review 2021, IEA, Paris. Available online: https://www.iea.org/reports/global-energy-review-2021 (accessed on 26 September 2022).
- Department of Economic and Social Affairs. World Economic Situation and Prospects 2022; United Nations: New York, NY, USA, 2022. [Google Scholar]
- Hua, Y.; Dong, F. China’s Carbon Market Development and Carbon Market Connection: A Literature Review. Energies 2019, 12, 1663. [Google Scholar] [CrossRef]
- Musa, S.D.; Tang, Z.; Ibrahim, A.O.; Habib, M. China’s energy status: A critical look at fossils and renewable options. Renew. Sustain. Energy Rev. 2018, 81, 2281–2290. [Google Scholar] [CrossRef]
- Yang, W.; Zhao, R.; Chuai, X.; Xiao, L.; Cao, L.; Zhang, Z.; Yang, Q.; Yao, L. China’s pathway to a low carbon economy. Carbon Balance Manag. 2019, 14, 14. [Google Scholar] [CrossRef]
- Liu, J. China’s renewable energy law and policy: A critical review. Renew. Sustain. Energy Rev. 2019, 99, 212–219. [Google Scholar] [CrossRef]
- Zhu, J.; Fan, C.; Shi, H.; Shi, L. Efforts for a Circular Economy in China: A Comprehensive Review of Policies. J. Ind. Ecol. 2019, 23, 110–118. [Google Scholar] [CrossRef]
- Wang, J.; Rodrigues, J.F.D.; Hu, M.; Behrens, P.; Tukker, A. The evolution of Chinese industrial CO2 emissions 2000-2050: A review and meta-analysis of historical drivers, projections and policy goals. Renew. Sustain. Energy Rev. 2019, 116, 109433. [Google Scholar] [CrossRef]
- Zheng, X.; Streimikiene, D.; Balezentis, T.; Mardani, A.; Cavallaro, F.; Liao, H. A review of greenhouse gas emission profiles, dynamics, and climate change mitigation efforts across the key climate change players. J. Clean. Prod. 2019, 234, 1113–1133. [Google Scholar] [CrossRef]
- Liu, X.; Shen, B.; Price, L.; Hasanbeigi, A.; Lu, H.; Yu, C.; Fu, G. A review of international practices for energy efficiency and carbon emissions reduction and lessons learned for China. Wiley Interdiscip. Rev. Energy Environ. 2019, 8, e342. [Google Scholar] [CrossRef]
- Zeng, S.; Liu, Y.; Liu, C.; Nan, X. A review of renewable energy investment in the BRICS countries: History, models, problems and solutions. Renew. Sustain. Energy Rev. 2017, 74, 860–872. [Google Scholar] [CrossRef]
- Boute, A. Shaping the Eurasian Gas Market: The Geopolitics of Energy Market Regulation. Geopolitics 2022, 28, 2042–2073. [Google Scholar] [CrossRef]
- Solazzo, E.; Crippa, M.; Guizzardi, D.; Muntean, M.; Choulga, M.; Janssens-Maenhout, G. Uncertainties in the Emissions Database for Global Atmospheric Research (EDGAR) emission inventory of greenhouse gases. Atmos. Chem. Phys. 2021, 21, 5655–5683. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Byrne, R.; Boehnel, H.; Wogau, K.; Kienel, U.; Ingram, B.L.; Zimmerman, S. Cultural implications of late Holocene climate change in the Cuenca Oriental, Mexico. Proc. Natl. Acad. Sci. USA 2015, 112, 1693–1698. [Google Scholar] [CrossRef]
- Armit, I.; Swindles, G.T.; Becker, K.; Plunkett, G.; Blaauw, M. Rapid climate change did not cause population collapse at the end of the European Bronze Age. Proc. Natl. Acad. Sci. USA 2014, 111, 17045–17049. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, X.; Chen, R.; Mao, X.; Qi, X. The United States and China on the paths and policies to carbon neutrality. J. Environ. Manag. 2022, 320, 115785. [Google Scholar] [CrossRef]
- Craig, R.K. Water law and climate change in the United States: A review of the legal scholarship. Wiley Interdiscip. Rev. Water 2020, 7, e1423. [Google Scholar] [CrossRef]
- Eurostat. Available online: https://ec.europa.eu/eurostat/web/energy/database (accessed on 9 October 2024).
- EUROSTAT. Energy Data Europe. Available online: https://climatepolicyinfohub.eu/issues/eu-climate-policy.html (accessed on 9 October 2024).
- EU. European Climate Policy—History and State of Play. Available online: https://climatepolicyinfohub.eu/european-climate-policy-history-and-state-play.html (accessed on 1 June 2024).
- Consejo Europeo Consejo de la Unión Europea. Cambio Climático: Lo que está Haciendo la UE. Available online: https://www.consilium.europa.eu/es/policies/climate-change/ (accessed on 1 June 2024).
- Bădîrcea, R.M.; Manta, A.G.; Florea, N.M.; Puiu, S.; Manta, L.F.; Doran, M.D. Connecting Blue Economy and Economic Growth to Climate Change: Evidence from European Union Countries. Energies 2021, 14, 4600. [Google Scholar] [CrossRef]
- Jakucionyte-Skodiene, M.; Krikstolaitis, R.; Liobikiene, G. The contribution of changes in climate-friendly behaviour, climate change concern and personal responsibility to household greenhouse gas emissions: Heating/cooling and transport activities in the European Union. Energy 2022, 246, 123387. [Google Scholar] [CrossRef]
- Tol, R.S.J. A cost–benefit analysis of the EU 20/20/2020 package. Energy Policy 2012, 49, 288–295. [Google Scholar] [CrossRef]
- De Rosa, M.; Gainsford, K.; Pallonetto, F.; Finn, D.P. Diversification, concentration and renewability of the energy supply in the European Union. Energy 2022, 253, 124097. [Google Scholar] [CrossRef]
- Borozan, D. Efficiency of Energy Taxes and the Validity of the Residential Electricity Environmental Kuznets Curve in the European Union. Sustainability 2018, 10, 2464. [Google Scholar] [CrossRef]
- Verbic, M.; Filipovic, S.; Radovanovic, M. Electricity prices and energy intensity in Europe. Util. Policy 2017, 47, 58–68. [Google Scholar] [CrossRef]
- O’Mahoney, A.; Denny, E. Electricity prices and generator behaviour in gross pool electricity markets. Energy Policy 2013, 63, 628–637. [Google Scholar] [CrossRef]
- Moreno, B.; López, A.J.; García-Álvarez, M.T. The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms. Energy 2012, 48, 307–313. [Google Scholar] [CrossRef]
- Zuoza, A.; Pilinkienė, V. Energy Efficiency and Carbon Emission Impact on Competitiveness in the European Energy Intensive Industries. Energies 2021, 14, 4700. [Google Scholar] [CrossRef]
- Maya-Drysdale, D.; Krog Jensen, L.; Vad Mathiesen, B. Energy Vision Strategies for the EU Green New Deal: A Case Study of European Cities. Energies 2020, 13, 2194. [Google Scholar] [CrossRef]
- Vaillancourt, K.; Waaub, J.P. Equity in international greenhouse gases abatement scenarios: A multicriteria approach. Eur. J. Oper. Res. 2004, 153, 489–505. [Google Scholar] [CrossRef]
- Böhringer, C.; Rutherford, T.F.; Tol, R.S.J. THE EU 20/20/2020 targets: An overview of the EMF22 assessment. Energy Econ. 2009, 31, S268–S273. [Google Scholar] [CrossRef]
- Marques, A.C.; Junqueira, T.M. European energy transition: Decomposing the performance of nuclear power. Energy 2022, 245, 123244. [Google Scholar] [CrossRef]
- Pereira Freitas, C.J.; da Silva, P.P. European Union emissions trading scheme impact on the Spanish electricity price during phase II and phase III implementation. Util. Policy 2015, 33, 54–62. [Google Scholar] [CrossRef]
- Cifuentes-Faura, J. European Union policies and their role in combating climate change over the years. Air Qual. Atmos. Health 2022, 15, 1333–1340. [Google Scholar] [CrossRef] [PubMed]
- Oberthür, S.; Dupont, C. The European Union’s international climate leadership: Towards a grand climate strategy? J. Eur. Public Policy 2021, 28, 1095–1114. [Google Scholar] [CrossRef]
- Hannesson, R. How much do European households pay for green energy? Energy Policy 2019, 131, 235–239. [Google Scholar] [CrossRef]
- Bartekova, E.; Ziesemer, T.H.W. The impact of electricity prices on foreign direct investment: Evidence from the European Union. Appl. Econ. 2019, 51, 1183–1198. [Google Scholar] [CrossRef]
- Belucio, M.; Santiago, R.; Fuinhas, J.A.; Braun, L.; Antunes, J. The Impact of Natural Gas, Oil, and Renewables Consumption on Carbon Dioxide Emissions: European Evidence. Energies 2022, 15, 5263. [Google Scholar] [CrossRef]
- Riede, F. The Laacher See-eruption (12,920 BP) and material culture change at the end of the Allerod in northern Europe. J. Archaeol. Sci. 2008, 35, 591–599. [Google Scholar] [CrossRef]
- Leitão, N.C.; Lorente, D.B. The Linkage between Economic Growth, Renewable Energy, Tourism, CO2 Emissions, and International Trade: The Evidence for the European Union. Energies 2020, 13, 4838. [Google Scholar] [CrossRef]
- Marinova, E.; Ntinou, M. Neolithic woodland management and land-use in south-eastern Europe: The anthracological evidence from Northern Greece and Bulgaria. Quat. Int. 2018, 496, 51–67. [Google Scholar] [CrossRef]
- Jóźwik, B.; Gavryshkiv, A.-V.; Kyophilavong, P.; Gruszecki, L.E. Revisiting the Environmental Kuznets Curve Hypothesis: A Case of Central Europe. Energies 2021, 14, 3415. [Google Scholar] [CrossRef]
- Ravikumar, A.P.; Bazilian, M.; Webber, M.E. The US role in securing the European Union’s near-term natural gas supply. Nat. Energy 2022, 7, 465–467. [Google Scholar] [CrossRef]
- IEA. Industrial Electricity Prices. Available online: https://www.iea.org/data-and-statistics/charts/industrial-electricity-prices-in-india-and-selected-countries-2005-2019 (accessed on 1 June 2024).
- IEA. Residential Electricity Prices. Available online: https://www.iea.org/data-and-statistics/charts/residential-electricity-prices-in-india-and-selected-countries-2005-2019 (accessed on 1 June 2024).
- Bardhan, R.; Debnath, R.; Jana, A. Evolution of sustainable energy policies in India since 1947: A review. Wiley Interdiscip. Rev. Energy Environ. 2019, 8, e340. [Google Scholar] [CrossRef]
- Thakur, S. From Kyoto to Paris and Beyond: The Emerging Politics of Climate Change. India Q. A J. Int. Aff. 2021, 77, 366–383. [Google Scholar] [CrossRef]
- Dubash, N.K.; Khosla, R.; Kelkar, U.; Lele, S. India and Climate Change: Evolving Ideas and Increasing Policy Engagement. Annu. Rev. Environ. Resour. 2018, 43, 395–424. [Google Scholar] [CrossRef]
- BP. Insigths India. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/energy-outlook/bp-energy-outlook-2023.pdf (accessed on 1 June 2024).
- Aineto, D.; Iranzo-Sanchez, J.; Lemus-Zuniga, L.G.; Onaindia, E.; Urchueguia, J.F. On the Influence of Renewable Energy Sources in Electricity Price Forecasting in the Iberian Market. Energies 2019, 12, 2082. [Google Scholar] [CrossRef]
- Mahesh, A.; Jasmin, K.S.S. Role of renewable energy investment in India: An alternative to CO2 mitigation. Renew. Sustain. Energy Rev. 2013, 26, 414–424. [Google Scholar] [CrossRef]
- Sokolowski, M.M. When black meets green: A review of the four pillars of India’s energy policy. Energy Policy 2019, 130, 60–68. [Google Scholar] [CrossRef]
- Kuramochi, T.; Wakiyama, T.; Kuriyama, A. Assessment of national greenhouse gas mitigation targets for 2030 through meta-analysis of bottom-up energy and emission scenarios: A case of Japan. Renew. Sustain. Energy Rev. 2017, 77, 924–944. [Google Scholar] [CrossRef]
- Komiyama, R.; Fujii, Y. Assessment of post-Fukushima renewable energy policy in Japan’s nation-wide power grid. Energy Policy 2017, 101, 863–611. [Google Scholar] [CrossRef]
- Herrador, M.; de Jong, W.; Nasu, K.; Granrath, L. Circular economy and zero-carbon strategies between Japan and South Korea: A comparative study. Sci. Total Environ. 2022, 820, 153274. [Google Scholar] [CrossRef]
- Chapman, A.J.; Itaoka, K. Energy transition to a future low-carbon energy society in Japan’s liberalizing electricity market: Precedents, policies and factors of successful transition. Renew. Sustain. Energy Rev. 2018, 81, 2019–2027. [Google Scholar] [CrossRef]
- Duffield, J.S.; Woodall, B. Japan’s new basic energy plan. Energy Policy 2011, 39, 3741–3749. [Google Scholar] [CrossRef]
- Liu, L.; Matsuno, S.; Zhang, B.; Liu, B.; Young, O. Local governance on climate mitigation: A comparative study of China and Japan. Environ. Plan. C Gov. Policy 2013, 31, 475–489. [Google Scholar] [CrossRef]
- Faida, L.R.W. Primeval Forest in the Period of Human Cultural History on Gunungsewu Karst Indonesia. In Proceedings of the 4th International Conference on Sustainable Future for Human Security (SUSTAIN), Kyoto, Japan, 19–21 October 2013; pp. 795–802. [Google Scholar]
- JEPIC. The Electric Power Industry in Japan 2022; JEPIC: Tokyo, Japan, 2022. [Google Scholar]
- Tofigh, A.A.; Abedian, M. Analysis of energy status in Iran for designing sustainable energy roadmap. Renew. Sustain. Energy Rev. 2016, 57, 1296–1306. [Google Scholar] [CrossRef]
- Ghadaksaz, H.; Saboohi, Y. Energy supply transformation pathways in Iran to reduce GHG emissions in line with the Paris Agreement. Energy Strategy Rev. 2020, 32, 100541. [Google Scholar] [CrossRef]
- World Bank Group. Fourth Development Plan and Economic Prospects (Vol. 2): Agriculture (English); Europe, Middle East & North Africa series, no. EMA 3; World Bank Group: Washington, DC, USA, 1969. [Google Scholar]
- Chaharsooghi, S.K.; Rezaei, M.; Alipour, M. Iran’s energy scenarios on a 20-year vision. Int. J. Environ. Sci. Technol. 2015, 12, 3701–3718. [Google Scholar] [CrossRef]
- Heidari, H.; Akbari, M.; Souhankar, A.; Hafezi, R. Review of global energy trends towards 2040 and recommendations for Iran oil and gas sector. Int. J. Environ. Sci. Technol. 2022, 19, 8007–8018. [Google Scholar] [CrossRef]
- Mohammadnejad, M.; Ghazvini, M.; Mahlia, T.M.I.; Andriyana, A. A review on energy scenario and sustainable energy in Iran. Renew. Sustain. Energy Rev. 2011, 15, 4652–4658. [Google Scholar] [CrossRef]
- European Comission. EDGAR—Emissions Database for Global Atmospheric Research. Available online: https://edgar.jrc.ec.europa.eu/ (accessed on 9 October 2024).
- European Commission: Joint Research Centre; Crippa, M.; Guizzardi, D.; Muntean, M.; Schaaf, E.; Solazzo, E.; Monforti-Ferrario, F.; Olivier, J.; Vignati, E. Fossil CO2 and GHG Emissions of all World Countries: 2022 Report; Publications Office: Luxembourg, 2022; Available online: https://edgar.jrc.ec.europa.eu/report_2022 (accessed on 9 October 2024).
- Weng, Q.; Xu, H. A review of China’s carbon trading market. Renew. Sustain. Energy Rev. 2018, 91, 613–619. [Google Scholar] [CrossRef]
- Fekete, H.; Kuramochi, T.; Roelfsema, M.; den Elzen, M.; Forsell, N.; Hoehne, N.; Luna, L.; Hans, F.; Sterl, S.; Olivier, J.; et al. A review of successful climate change mitigation policies in major emitting economies and the potential of global replication. Renew. Sustain. Energy Rev. 2021, 137, 110602. [Google Scholar] [CrossRef]
- Papiez, M.; Smiech, S.; Frodyma, K. Determinants of renewable energy development in the EU countries. A 20-year perspective. Renew. Sustain. Energy Rev. 2018, 91, 918–934. [Google Scholar] [CrossRef]
- Evans, M.; Kholod, N.; Kuklinski, T.; Denysenko, A.; Smith, S.J.; Staniszewski, A.; Hao, W.M.; Liu, L.; Bond, T.C. Black carbon emissions in Russia: A critical review. Atmos. Environ. 2017, 163, 9–21. [Google Scholar] [CrossRef]
- Sharmina, M.; Anderson, K.; Bows-Larkin, A. Climate change regional review: Russia. WIREs Clim. Change 2013, 4, 373–396. [Google Scholar] [CrossRef]
- Afsharzade, N.; Papzan, A.; Ashjaee, M.; Delangizan, S.; Van Passel, S.; Azadi, H. Renewable energy development in rural areas of Iran. Renew. Sustain. Energy Rev. 2016, 65, 743–755. [Google Scholar] [CrossRef]
- Stern, D.I. The Environmental Kuznets Curve. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Block, S.; Emerson, J.W.; Esty, D.C.; de Sherbinin, A.; Wendling, Z. Environmental Performance Index; Yale Center for Environmental Law & Policy: New Haven, CT, USA, 2024; Available online: https://epi.yale.edu/ (accessed on 1 June 2024).
- Basseches, J.A.; Bromley-Trujillo, R.; Boykoff, M.T.; Culhane, T.; Hall, G.; Healy, N.; Hess, D.J.; Hsu, D.; Krause, R.M.; Prechel, H.; et al. Climate policy conflict in the US states: A critical review and way forward. Clim. Change 2022, 170, 32. [Google Scholar] [CrossRef]
- Jones, D.; Graham, E.; Tunbridge, P. Wind and Solar Now Generate One-Tenth of Global Electricity; Ember: London, UK, 2020. [Google Scholar]
- European Union. From 6 to 27 Members. Available online: https://neighbourhood-enlargement.ec.europa.eu/enlargement-policy/6-27-members_en#:~:text=Ten new countries join the EU: Czech Republic (accessed on 1 June 2024).
- Calligaris, S.; Criscuolo, C.; De Lyon, J.; Greppi, A.; Pallanch, O.; Chaves, M. Industry Concentration in Europe: Trends and Methodological Insights; OECD Publishing: Paris, France, 2024. [Google Scholar] [CrossRef]
- European Comission. European Industrial Strategy. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/europe-fit-digital-age/european-industrial-strategy_en#:~:text=On 11 May 2021, the Commission updated the (accessed on 1 June 2024).
- European Investment Bank. European Investment Report 2022–2023; European Investment Bank: Luxembourg, 2023. [Google Scholar]
- Peña-Ramos, J.A.; del Pino-García, M.; Sánchez-Bayón, A. The Spanish Energy Transition into the EU Green Deal: Alignments and Paradoxes. Energies 2021, 14, 2535. [Google Scholar] [CrossRef]
- Panitz, R.; Glückler, J. Economic Geographies of Industrial Change: Shifts in Location, Inter-regional Specialization, and Global Connectivity. In The Oxford Handbook of Industry Dynamics; Kipping, M., Kurosawa, T., Westney, D.E., Eds.; Oxford University Press: Oxford, UK, 2021. [Google Scholar]
- Lin, B.; Wang, C. Does industrial relocation affect green total factor energy efficiency? Evidence from China’s high energy-consuming industries. Energy 2024, 289, 130002. [Google Scholar] [CrossRef]
- Wan, L.; Orzes, G.; Nassimbeni, G. Reconfiguring the Global Supply Chain: Reshoring. In The Palgrave Handbook of Supply Chain Management; Sarkis, J., Ed.; Springer International Publishing: Cham, Switzerland, 2024; pp. 873–897. [Google Scholar]
- Li, Y.; Mau, K.; Xu, M. Rising Wages and Intra-Country Industry Relocation: Evidence from China. Open Econ. Rev. 2023, 34, 579–615. [Google Scholar] [CrossRef]
- Lin, Q.; Luo, X.; Lin, G.; Yang, T.; Su, W. Impact of relocation and reconstruction policies on the upgrading of urban industrial structure in old industrial districts. Front. Environ. Sci. 2022, 10, 1002993. [Google Scholar] [CrossRef]
- Somoza Medina, X. From Deindustrialization to a Reinforced Process of Reshoring in Europe. Another Effect of the COVID-19 Pandemic? Land 2022, 11, 2109. [Google Scholar] [CrossRef]
- Capello, R.; Cerisola, S. Industrial transformations and regional inequalities in Europe. Ann. Reg. Sci. 2023, 70, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Policy Department Economic and Scientific Policy. Relocation of EU Industry: An Overview of Literature; Publications Office of the European Union: Luxembourg, 2006. [Google Scholar]
Country | Sources | References |
---|---|---|
China | Scientific papers | [11,12,13,14,15,16,17,18,19,20,21] |
USA | Scientific papers | [22,23,24,25] |
EU27 UK | Scientific papers EUROSTAT [26,27] European Climate Policy [28] | [19,23,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53] |
India | Scientific papers IEA [54,55] | [17,56,57,58,59,60,61,62,63,64,65,66,67,68,69] |
Russia | Scientific papers | |
Japan | Scientific papers JEPIC [70] | [63,64,65,66,67,68,69] |
Iran | Scientific papers | [71,72,73,74,75,76] |
Activity | Policies and Actions Taken 1990–2022 | Accomplishments | Promises |
---|---|---|---|
China | |||
Power industry | 11th FYP (2006–2010):
| 11th FYP: Reduction of 132 Mt CO2 in energy consumption 12th FYP: 20.8% non-fossil fuel energy 73.9% CO2 intensity reduction (1971) Reduction in coal consumption to 63.7% 13th FYP (2016–2020): Capacity of solar, wind and hydro power installations increased at annual rates of 135.3%, 34.6%, and 7.1% | Increase to 15% (2005) non-fossil fuels by 2020 20% non-fossil fuels by 2030 |
Other industrial combustion | 11th FYP (2006–2010):
Strategic Plans | 22% reduction (2005) in carbon industry by 2020 40% reduction (2005) in carbon industry by 2025 | |
Transport and cities | 11th FYP (2006–2010):
| 11th FYP (2006–2010): Recycling of 72 Mt of steel scrap, 5.2 Mt of nonferrous metals, and more than 16 Mt of plastic 12th FYP (2011–2015): 260 Mt GHG due to energy-efficient buildings | |
Others | 11th FYP (2006–2010):
| 2020: 40–45% reduction in GHG (2005) intensity 2020: 15% reduction in GHGs (2015) 2030: 60–65% reduction in GHG (2005) intensity | |
USA | |||
Power industry | 1992: Energy Policy Law 2005: Energy Policy Act of 2005 2007: Energy Independence Security Act 2014: Clean Energy Plan 2017: State-level renewable portfolio standards (RPS) and tax relief 2020: Climate Zero Action Plan | 12.6% of primary energy from RE sources 0.9% annual growth of the use of REs for electricity from 2007 to 2017 | GHGs reduced by 70% by 2030 (2005) Decarbonizing the power industry by 2035 Non-fossil fuels to increase from 48% in 2022 to 80% in 2030, and to 100% in 2035 |
Other industrial combustion | 1963: Clean Air Act 1993: Climate Change Action Plan 2013: Climate Action Plan 2021: Long-Term Strategy to Net-Zero GHG | 4.7% per year intensity improvement | |
Transport and cities | 2021: Build Back Better Act 2021: Executive Order on Tackling the Climate Crisis at Home and Abroad | Design planned after 2020 should be Zero Net Carbon by 2030 Large-scale electrification in transportation | |
Others | 2003: Regional Carbon Sequestration Partnerships | 56% reduction in emissions/GDP in 2021 (1990) | Net-zero emissions by 2050 GHG reduction by 17% by 2020, 30% by 2025, and 42% by 2030 (2005) |
EU27 UK | |||
Power industry | 1991: SAVE Program 1993: ALTENER Program 1995: Green Paper 1995: White Paper 2001: Renewable Electricity Directive 2008: Climate Energy Package 2009: RE Roadmap 2012: Energy Efficiency Directive | Primary energy consumption did not exceed 1483 Mtoe in 2020 Final energy consumption did not exceed 1086 Mtoe in 2020 22.1% RE share in 2020 | RE share: 8% in 2005 Increase RE share to 40% to reduce GHGs to 55% by 2030 (1990) Reduce primary and final energy consumption to 36 and 39% by 2030 |
Other industrial combustion | 2000: European Climate Change Programme 2021: European Climate Law | ||
Transport and cities | 2010: Energy Performance of Buildings Directive | ||
Others | 2007: 20-20-20 by 2020 2015: First Action Plan for CE 2019: European Green Deal 2021: Plan for dealing with organic pollutants, waste, and spills from ships 2022: Fit for 55 | 11% reduction in GHGs in 2012 (1990) 25% reduction in GHGs in 2019 (1990) 34% reduction in GHGs in 2020 (1990) | Net-zero emissions by 2050 Reduction in emissions of 80–95% by 2050 (1990) |
India | |||
Power industry | 2005: National Electricity Policy 2006: Integrated Energy Policy 2007: Generation-Based Incentives (GBIs) and Feed-in Tariffs for REs 2008: Missions to enhance energy efficiency 2010: Jawaharlal Nehru National Solar Mission 2017: Draft National Energy Policy | Clean energy investment increased to USD 12.3 billion in 2011, 36% higher than 2010; India ranked fifth in the world for RE investment | The wind energy sector: 24% of Indian energy demand by 2030 |
Other industrial combustion | |||
Transport and cities | 2018: Energy Conservation Building Code Rules | Universal electrification by 2022 | |
Others | Reduce emissions/GDP by 20–25% by 2020 (2005) | ||
Russia | |||
Power industry | 2009: Energy Efficiency Legislation 2009: Energy Strategy for 2030 | 6th largest producer of RE | A 40% reduction in energy intensity (GDP) by 2020 (2007) Total investment in RE: USD 53 billion by 2035 |
Other industrial combustion | 2009: Climate Doctrine 2011: Climate Action Plan | Reducing market imbalance | |
Transport and cities | |||
Others | 2013: The Level of GHG Emissions draft. | Reduction in emissions of 25% by 2020 (1990) Reduction in emissions of 30% by 2030 (1990) | |
Japan | |||
Power industry | 1997: Keidanren VAP for energy efficiency 1998: Top Runner Program efficiency standards 2003: Renewable Portfolio Standard 2006: Strategic Energy Plan 2010: Sector benchmarks for energy efficiency 2012: Feed-in tariff scheme for energy 2014: Adaptation of the Energy Plan due to Fukushima disaster 2015: Governmental Energy Outlook | Decreasing trend of the use of energy since 2007 World leadership in RE | Electric retailers: use 1.6% annually from REs RE share: 22–24% by 2030 20–22% nuclear power in total electricity generation by 2030 100% energy independence by 2050 |
Other industrial combustion | 2013: Environmental impact assessments for coal-fired power plants | Energy efficiency in industry sector improved 0.4% annually (1991–2008) and 0.9% (2000–2008) | 20% green industry by 2020 |
Transport and cities | 2015: Zero-Energy House/Building Roadmap | Net-zero energy of new buildings by 2030 | |
Others | 2005: Japan’s Voluntary Emissions Trading Scheme (JVETS) 2020: CE Vision 2020: Green Growth Strategy towards 2050 Carbon Neutrality 2021: CE Finance Disclosure Guidance | 2018 cyclical usage rate (resource): 18% (80% increase since 2000) 2018 cyclical usage rate (waste): 47% (30% increase since 2000) | Reduction in emissions of 26% by 2030 (2013) Reduction in emissions of 80% by 2050 (1990) 25% green technologies of total R&D |
Iran | |||
Power industry | 2010: Iran’s subsidy reform | Improve energy efficiency | |
Other industrial combustion | |||
Transport and cities | |||
Others | 2005: Twenty-Year Vision Document |
Country | 1990 Mt | 2005 Mt | 2019 Mt | 2020 Mt | %Increase 2005–1990 | %Increase 2020–2005 | %Increase 2020–2019 |
---|---|---|---|---|---|---|---|
EU27 UK | 4408.72 | 4249.14 | 3303.9 | 2605.11913 | −3.62% | −38.69% | −21.15% |
USA | 5065.05 | 8638.47 | 5107.2 | 4464.10581 | 17.44% | −24.95% | −19.46% |
China | 2404.74 | 6273.36 | 11,535 | 11,948.1196 | 160.87% | 90.46% | 12.50% |
Russia | 2393.65 | 1734.03 | 1792 | 1797.59527 | −27.56% | 3.67% | 0.17% |
Japan | 1149.47 | 1276.93 | 1153.7 | 1054.90415 | 11.09% | −17.39% | −2.99% |
India | 599.82 | 1219.35 | 2597.3 | 2396.33652 | 103.29% | 96.53% | −6.08% |
Iran | 204.756 | 468.88 | 701.986 | 690.864022 | 128.99% | 47.34% | −0.34% |
Country | 1990 t/kUSD | 2005 t/kUSD | 2019 t/kUSD | 2020 t/kUSD | Increase 2005–1990 | Increase 2020–2005 | Increase 2020–2019 |
---|---|---|---|---|---|---|---|
EU27 UK | 0.315017158 | 0.226757826 | 0.147167082 | 0.139526444 | −28.02% | −38.47% | −5.19% |
USA | 0.501857387 | 0.370627331 | 0.244386394 | 0.225358619 | −26.15% | −39.20% | −7.78% |
China | 1.50065879 | 0.911364893 | 0.523330498 | 0.51956513 | −39.27% | −42.99% | −0.72% |
Russia | 0.753634168 | 0.603168863 | 0.470427063 | 0.461789077 | −19.97% | −23.44% | −1.84% |
Japan | 0.288908104 | 0.263133021 | 0.216288447 | 0.209211249 | −8.92% | −20.49% | −3.27% |
India | 0.378954305 | 0.326288657 | 0.280474588 | 0.280681825 | −13.90% | −13.98% | 0.07% |
Iran | 0.388787294 | 0.500235739 | 0.542036783 | 0.549403806 | 28.67% | 9.83% | 1.36% |
Country | 2020 Mt | 2022 Mt | 2023 Mt | %Increase 2020–2022 | %Increase 2022–2023 |
---|---|---|---|---|---|
EU27 UK | 2605.11913 | 2824.302138 | 2804.805654 | 8.41% | −0.69% |
USA | 4464.105812 | 4768.873443 | 4853.780222 | 6.83% | 1.78% |
China | 11,948.1196 | 12,717.65531 | 12,667.42843 | 6.44% | −0.39% |
Russia | 1797.595272 | 1932.695427 | 1909.039311 | 7.52% | −1.22% |
Japan | 1149.47 | 1075.662975 | 1082.645436 | −6.42% | 0.65% |
India | 2396.336517 | 2528.133476 | 2693.034105 | 5.50% | 6.52% |
Iran | 690.8640221 | 677.8153336 | 686.4157248 | −1.89% | 1.27% |
Country | 2020 t/kUSD | 2022 t/kUSD | 2023 t/kUSD | %Increase 2020–2022 | %Increase 2022–2023 |
---|---|---|---|---|---|
EU27 UK | 0.13952644 | 0.14292229 | 0.13695742 | 2.43% | −4.17% |
USA | 0.22535861 | 0.22570275 | 0.22507675 | 0.15% | −0.28% |
China | 0.51956513 | 0.50995049 | 0.49318389 | −1.85% | −3.29% |
Russia | 0.46178907 | 0.46995633 | 0.47401284 | 1.77% | 0.86% |
Japan | 0.20921124 | 0.20857095 | 0.20778547 | −0.31% | −0.38% |
India | 0.28068182 | 0.26899043 | 0.26777708 | −4.17% | −0.45% |
Iran | 0.54940380 | 0.51376891 | 0.50639301 | −6.49% | −1.44% |
Country | EPI Score |
---|---|
EU27 UK | 67.2 |
USA | 57.2 |
China | 35.3 |
Russia | 46.7 |
Japan | 61.4 |
India | 27.6 |
Iran | 41.8 |
Activity | Targets | Reality |
---|---|---|
China | ||
Power industry |
| Increase in emissions associated with power industry of 123% from 2005 to 2020 |
Other industrial combustion |
| Increase in emissions associated with other industrial processes of 123% from 2005 to 2020 |
Others |
| Reduction in emissions intensity of 43% (2020–2005) |
| Increase in emissions of 12% (2020–2015) | |
USA | ||
Power industry |
| Reduction in emissions of 41% (2020–2005) |
Transport and cities |
| Tax rebates to support electric vehicles |
Others |
|
|
EU27 UK | ||
Power industry |
|
|
Others |
|
|
India | ||
Power industry |
| Increase in emissions associated with power industry of 97% (2020–2005) |
Wind capacity: 30% addition to global capacity | ||
Transport and cities |
| Not achieved |
Others |
|
|
Russia | ||
Power industry |
|
|
Other industrial combustion |
| Not achieved |
Others |
|
|
Japan | ||
Power industry |
|
|
|
| |
Transport and cities |
|
|
Others |
|
|
Power industry | Improve energy efficiency |
|
Year | New Members |
---|---|
1995 | Austria, Finland, and Sweden |
2004 | Czech Republic, Estonia, Cyprus, Latvia, Lithuania, Hungary, Malta, Poland, Slovakia, and Slovenia |
2007 | Bulgaria and Romania |
2013 | Croatia |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portillo Juan, N.; Negro Valdecantos, V.; Olalde Rodríguez, J.; Iglesias, G. Environmental Policy vs. the Reality of Greenhouse Gas Emissions from Top Emitting Countries. Energies 2024, 17, 5705. https://doi.org/10.3390/en17225705
Portillo Juan N, Negro Valdecantos V, Olalde Rodríguez J, Iglesias G. Environmental Policy vs. the Reality of Greenhouse Gas Emissions from Top Emitting Countries. Energies. 2024; 17(22):5705. https://doi.org/10.3390/en17225705
Chicago/Turabian StylePortillo Juan, Nerea, Vicente Negro Valdecantos, Javier Olalde Rodríguez, and Gregorio Iglesias. 2024. "Environmental Policy vs. the Reality of Greenhouse Gas Emissions from Top Emitting Countries" Energies 17, no. 22: 5705. https://doi.org/10.3390/en17225705
APA StylePortillo Juan, N., Negro Valdecantos, V., Olalde Rodríguez, J., & Iglesias, G. (2024). Environmental Policy vs. the Reality of Greenhouse Gas Emissions from Top Emitting Countries. Energies, 17(22), 5705. https://doi.org/10.3390/en17225705