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Introduction Phase-type Distributions Bayesian Inference for PHT Computational Issues

Toy Example : Redundant Repairable Components

State Meaning
1 both PS working
2 1 failed, 2 working
3 1 working, 2 failed
4 subsystem failed

PS 1 down
PS 2 up

PS 1 up
PS 2 down

PS 1 down
PS 2 down

PS 1 up
PS 2 up

λf λf

λf λf

λr λr

λu

=⇒ T =




−2λf λf λf 0
λr −λr − λf 0 λf

λr 0 −λr − λf λf

0 0 0 0



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Inferential Setting

Cano & Rios (2006) provide conjugate posterior calculations in
the context of analysing repairable systems when stochastic
process leading to absorption is observed.

Data
For each absorption time, one has:
• Starting state
• Length of time in each state
• Number of transitions between each state
• Ultimate absorption time

Model by a Phase-type distribution =⇒ Bladt et al. (2003)
provides a Bayesian MCMC algorithm.
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Definition of Phase-type Distributions

An absorbing continuous time Markov chain is one in which
there is a state that, once entered, is never left. That is, the
n+ 1 state intensity matrix can be written:

T =
(

S s
0 0

)

where S is n× n, s is n× 1 and 0 is 1× n, with

s = −Se

Then, a Phase-type distribution (PHT) is defined to be the
distribution of the time to entering the absorbing state.

Y ∼ PHT(π,S) =⇒





FY (y) = 1− πT exp{yS}e

fY (y) = πT exp{yS}s

http://www.tcd.ie/
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Example

State Meaning
1 both PS working
2 1 failed, 2 working
3 1 working, 2 failed
4 subsystem failed

PS 1 down
PS 2 up

PS 1 up
PS 2 down

PS 1 down
PS 2 down

PS 1 up
PS 2 up

λf λf

λf λf

λr λr

λu

=⇒ T =




−2λf λf λf 0
λr −λr − λf 0 λf

λr 0 −λr − λf λf

0 0 0 0




fY (y) = πT exp{yS}s FY (y) = 1− πT exp{yS}e
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Example

State Meaning
1 both PS working
2 1 failed, 2 working
3 1 working, 2 failed
4 subsystem failed

PS 1 down
PS 2 up

PS 1 up
PS 2 down

PS 1 down
PS 2 down

PS 1 up
PS 2 up

λf λf

λf λf

λr λr

λu

=⇒ T =




−2λf λf λf 0
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λr 0 −λr − λf λf

0 0 0 0




−2λf λf λf 0
λr −λr − λf 0 λf

λr 0 −λr − λf λf

0 0 0 0

S s

fY (y) = πT exp{yS}s FY (y) = 1− πT exp{yS}e
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Algorithm 1: Metropolis-Hastings Simulation of Process

In summary:
• Can simulate chain from

P(path · |Yi ≥ yi)

trivially by rejection sampling.
• A Metropolis-Hastings acceptance ratio (ratio of exit rates)

exists such that for sufficient draws, the final chain when
truncated to time yi (at which point it absorbs) will be a
draw from

P(path · |Yi = yi)
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Algorithm 2: Gibbs Sampling from Posterior

The Gibbs step achieves the goal of simulating from

p(π,S |y)

by sampling from
p(π,S,paths · |y)

through the iterative process

p(π,S | paths ·,y)

p(paths · | π,S,y)

http://www.tcd.ie/
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Motivation for Modifications

1 Certain state transitions make no physical sense. (eg 2→ 3
in earlier example)

State Meaning
1 both PS working
2 1 failed, 2 working
3 1 working, 2 failed
4 subsystem failed

=⇒ T =




−2λf λf λf 0
λr −λr − λf 0 λf

λr 0 −λr − λf λf

0 0 0 0




2 When part of a larger system, it is highly likely there will
be censored observations.

3 Where there is no reason to believe distributional
differences between parameters, they should (in ideal sense)
be constrained to be equal. This is as much to assist with
reducing parameter dimensionality.

4 Computation time!
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Statistical -vs- Stochastic

In other words, we want an MCMC algorithm fit for performing
inference when PHTs used for stochastic rather than statistical
modelling.

Stochastic Model
“Stochastic models seek to represent an underlying physical
phenomenon of interest, albeit often in a highly idealised way,
and have parameters that are physically interpretable.” — Isham

Statistical Model
“In contrast, statistical models are descriptive, and represent
the statistical properties of data and their dependence on
covariates, without aiming to encapsulate the physical
mechanisms involved.” — Isham

http://www.tcd.ie/
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Statistical -vs- Stochastic

In other words, we want an MCMC algorithm fit for performing
inference when PHTs used for stochastic rather than statistical
modelling.

Stochastic Model −→ Aslett & Wilson
“Stochastic models seek to represent an underlying physical
phenomenon of interest, albeit often in a highly idealised way,
and have parameters that are physically interpretable.” — Isham

Statistical Model −→ Bladt et al
“In contrast, statistical models are descriptive, and represent
the statistical properties of data and their dependence on
covariates, without aiming to encapsulate the physical
mechanisms involved.” — Isham
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Solving I-III

1 To prohibit a transition i→ j,
• Do not draw Sij from the prior in algorithm 2.
• Fix Sij at zero when running algorithm 1.
• Do not draw values for Sij from the full conditional

posterior in algorithm 2.
2 To account for censoring:

• In algorithm 1, if yi is a censored observation, return
immediately once rejection sampling from

P(path · |Yi ≥ yi)

is complete, ignoring the MH steps. Else, use algorithm 1 as
normal.

3 Some routine algebra shows conjugacy can be maintained
with constraints, though naturally the parameter updating
changes.
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Toy Example Results

100 uncensored observations
simulated from PHT with

S =



−3.6 1.8 1.8
9.5 −11.3 0
9.5 0 −11.3



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Toy Example Results

100 (25%) censored
observations simulated from
PHT with

S =



−3.6 1.8 1.8
9.5 −11.3 0
9.5 0 −11.3




Censored Case
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The Big Issue

Intractable computation time for many applications!

1 longer chains and MCMC jumps to states for which
observations are far in the tails can stall rejection
sampling step of MH algorithm.

2 states from which absorption impossible – wasteful
to resample whole chain because state at time yi

unsuitable for truncation.
3 time for MH algorithm to reach stationarity can

grow rapidly.
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Intractable computation time for many applications!

1 longer chains and MCMC jumps to states for which
observations are far in the tails can stall rejection
sampling step of MH algorithm.

p(π,S | paths ·,y)

p(paths · | π,S,y)

P(Yi ≥ yi | true params) = 0.01

2 states from which absorption impossible – wasteful
to resample whole chain because state at time yi

unsuitable for truncation.
3 time for MH algorithm to reach stationarity can

grow rapidly.
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p(π,S | paths ·,y)

p(paths · | π,S,y)

P(Yi ≥ yi | π,S) = 0.09

95% CI = [1, 39]

E(RS iter.) = 11
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The Big Issue

Intractable computation time for many applications!

1 longer chains and MCMC jumps to states for which
observations are far in the tails can stall rejection
sampling step of MH algorithm.

95% CI = [25, 3687]

E(RS iter.) = 1000p(π,S | paths ·,y)

p(paths · | π,S,y)

P(Yi ≥ yi | π,S) = 0.001

2 states from which absorption impossible – wasteful
to resample whole chain because state at time yi

unsuitable for truncation.
3 time for MH algorithm to reach stationarity can

grow rapidly.

http://www.tcd.ie/


Introduction Phase-type Distributions Bayesian Inference for PHT Computational Issues

The Big Issue

Intractable computation time for many applications!

1 longer chains and MCMC jumps to states for which
observations are far in the tails can stall rejection
sampling step of MH algorithm.

p(π,S | paths ·,y)

p(paths · | π,S,y)

P(Yi ≥ yi | π,S) = 10−6

2 states from which absorption impossible – wasteful
to resample whole chain because state at time yi

unsuitable for truncation.
3 time for MH algorithm to reach stationarity can

grow rapidly.

http://www.tcd.ie/


Introduction Phase-type Distributions Bayesian Inference for PHT Computational Issues

The Big Issue

Intractable computation time for many applications!

1 longer chains and MCMC jumps to states for which
observations are far in the tails can stall rejection
sampling step of MH algorithm.

E(RS iter.) = 106

95% CI = [25317, 3688877]
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Intractable computation time for many applications!

1 longer chains and MCMC jumps to states for which
observations are far in the tails can stall rejection
sampling step of MH algorithm.
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The Big Issue

Intractable computation time for many applications!

1 longer chains and MCMC jumps to states for which
observations are far in the tails can stall rejection
sampling step of MH algorithm.

2 states from which absorption impossible – wasteful
to resample whole chain because state at time yi

unsuitable for truncation.

State Meaning P(state)
1 both PS working 0.9986
2 1 failed, 2 working 0.0007
3 1 working, 2 failed 0.0007

=⇒ E(MH iter) = 1429

95% CI = [36, 5267]

3 time for MH algorithm to reach stationarity can
grow rapidly.
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The Big Issue

Intractable computation time for many applications!

1 longer chains and MCMC jumps to states for which
observations are far in the tails can stall rejection
sampling step of MH algorithm.
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Approach: Exact Conditional Sampling

Replace rejection sampling + MH with exact conditional
sampling.

• Sample a starting state, i, from the probability mass
function:

P(Y {0} = i |π,S, Y = y) =
eT

i exp{Sy}s πi

πT exp{Sy}s
and set t = 0

• With probability

P(Y [t, y) = i ∩ Y {y} = n+ 1 |S, Y = y, Y {t} = i)

=
exp{Sii(y − t)} si

eT
i exp{S(y − t)}s

set Y [t, y) = i and Y {y} = n+ 1 and end the algorithm;
else continue
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Approach: Exact Conditional Sampling

• Sample the sojourn time in the current state, δ, before a
non-absorbing move from

p(δ = d |S, Y = y, Y [t, t+ δ) = i, Y {t+ δ} ∈ {1, . . . , n}\i)

=
pT

i · exp{S(y − t− d)}s (−Sii) exp(Siid)∫ y−t

0
pT

i · exp{S(y − t− δ)}s (−Sii) exp(Siiδ) dδ

and set Y [t, t+ d) = i

• Sample a state move, i→ j, from

P(Y {t+ d} = k |S, Y = y, Y [t, t+ d) = i, Y {t+ d} ∈ {1, . . . , n}\i)
∝ Sik exp{S(y − t− d)}s

and set Y {t+ d} = j

• Update t = t+ d and i = j, then loop to second step
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Tail Depth Performance Improvement

Upper tail probability (10^-x)
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Overall Performance Improvement

This shows the new method keeping pace in ‘nice’ problems and
significantly outperforming otherwise.

T =
(−3 1 1 1

1 −3 1 1
1 1 −3 1
0 0 0 0

)
T =

( −2 0.01 1.99 0
1 −300 0 299

299 0 −300 1
0 0 0 0

)

No problems i-iii All problems i-iii

MH ECS
t̄ 1.6 µs 7.2 µs
st 104 µs 19 µs

MH ECS
10.2 hours 0.016 secs
9.4 hours 0.015 secs

2,300,000 × faster on average in hard problem
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Future Work

• At the moment, further speedup simulating the latent
process might only be possible though extra efficiencies in
computing the matrix exponential. Tough problem, see
Moler & Van Loan (2003).

• Beyond this, of interest is whether it is possible to ascertain
exact/approximate distributions for the sufficient statistics:

N = Nij matrix of no. transitions i→ j
z = zi vector of total time spent in state i
B = Bi vector of no. times started in state i

of a CTMC, given the generator matrix. This may allow
these to be sampled directly rather than indirectly as here?

• Can we combat the creep of increasing autocorrelation for
these constrained models?
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