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1. The Problem
Telecommunications networks are being utilised
ever more by governments, businesses and indi-
viduals to conduct mission critical activities. This
increasing reliance on telecoms infrastructure cre-
ates a strong demand for highly reliable networks
which suffer minimal outages: any outage can
have potentially serious economic impact on both
network providers and users.

2. Motivating Examples
Hardware/software interaction: 15th January 1990, telephones across the United States were inoperable
for most of the day due to a software bug in AT&T’s network causing a cascading switch failure.

Human error: 17th September 1991, all of New York lost service for 8 hours. Power was lost, primary
backup systems failed and engineers failed to respond to emergency alarms in time before secondary
power was exhausted. The effect was immense:

Figure 1: AT&T Global Network

• 5 million blocked calls

• 80% of Federal Aviation Authority communication be-
tween New York airports blocked

• Kennedy, La Guardia and Newark airports closed for 4
hours

• 1,174 flights cancelled and 85,000 passengers disrupted

Telecom Importance: In 2004 the FCC ruled that carrier outage reports be kept secret in the interests of
“national defence and public safety”, due to the government’s view of the critical importance of reliable
telecom networks.

3. Research Questions
The ultimate focus is on modelling the reliability of
a complex physical network where failure occurs
through the dependence or interaction between its
components – hardware, software and human –
that can cause a small failure in the network to es-
calate to a serious outage.

We have decided on the following milestones:

I. improving models for hardware

II. modelling hardware/software interactions

III. accounting for human error

IV. unified model for hardware / software / hu-
man interactions

Work has been underway less than a year and is
currently focused on I/II.
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4. Current Techniques
Bayesian networks (BN): enable efficient mod-
elling of dependence in complex systems.

InstallationQuality

Cable

Antenna

FansComponents

Radio

Service

Components Temperature Supply

Power Amp

A BN is composed of a qualitative part (a directed
acyclic graph, see diagram above) and quantitative
part (conditional probability distributions). Parts
of the BN model may be specified, say through ob-
served data, and the model updated.

Markov processes: provide a natural way to model
redundant systems which can be repaired without
affecting service. For example:
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A redundant system may start fully operational,
become ‘degraded’ when there is a covered fail-
ure and return to full operation after repair without
service actually being affected.

5. Proposed Solution

The arcs in a Bayesian network represent ‘causal-
ity’, so there is no natural graph structure to ex-
plicitly represent a repairable redundant system be-
cause the arcs of a Markov process do not carry the
same interpretation. On the other hand, Markov
processes are distributionally inflexible with all fail-
ures assumed to be exponential, so extending this
approach to a unified hardware/software model is
not possible because software reliability is highly
non-exponential. We propose the use of Phase-type
(PH) distributions to overcome these current limita-
tions evident in the literature.

A PH-distribution models the time until entering an
absorbing state of a continuous-time Markov pro-
cess. For example, given the matrix of transition

rates

(
S s0

0 0

)
=


λ11 λ12 λ13 λ14

λ21 λ22 λ23 λ24

λ31 λ32 λ33 λ34

0 0 0 0


the time to entering state 4, which represents failure
of a repairable redundant sub-system, has density

fT (t) = αT exp(St)s0

where α is the vector of initial state probabilities
and exp is the matrix exponential operator.

This novel approach of using PH-distributions
as the conditional probability distributions in a
Bayesian network enables embedding an entire

Markov process as a single node within the BN,
improving the modelling accuracy of redundant
repairable sub-systems and moreover maintaining
the inferential and distributional flexibility afforded
by BNs.

In addition, PH-distributions present interesting in-
ferential challenges in their own right, since there is
no closed form expression for the likelihood

L(λ | t1, . . . , tn) =
n∏

i=1

αT

 ∞∑
j=0

(Sti)j

j!

 s0

Thus at the time of writing, the task being ad-
dressed is application of the EM-algorithm within
BN inference, or use of alternative techniques to in-
corporate PH-distributions into the framework.
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