Statistical methods for system reliability

Louis J. M. Aslett (louis.aslett@durham.ac.uk)
Department of Mathematical Sciences
Durham University

UTOPIAE Training School
22 November 2017

- : Al
UTOPIA - [ B Wourham

University

MARIE CURIE

1/32


mailto:louis.aslett@durham.ac.uk

Introduction

Introduction

2/32



Introduction

About me

» Cryptography and statistics — privacy preserving
methodology

Reliability theory

« Computational statistics, HPC for:

¢ Markov-chain Monte Carlo on MPI clusters and GPUs
¢ Hidden Markov Model acceleration for statistical genetics
» machine learning

Stats software

* ReliabilityTheory, HomomorphicEncryption, ...
¢ RStudio AMIs for Amazon Web Services (incl Julia)
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Introduction

Bayesian inference

« Data: t = {t1,...,tn}

* Model: ¢ is the realisation of a random vector 7" having
probability density f7|¢(-[), where ¢ is an unknown
parameter. fry(t|-) is the likelihood.

* Prior: all knowledge about ¢) which is not contained in ¢ is
expressed via prior density fy ().

* Posterior: Bayes’ Theorem enables us to rationally update
the prior to our posterior belief in light of the new evidence
(data).

Bayes’ Theorem

 fre(@Y) fe(¥) o~
foir(W|t) = T fr19@9) fu(dd) friw|¥) fe(y)
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Introduction
Bayesian inference
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Introduction
Bayesian inference: prediction

Bayesian inference provides a natural method to perform
prediction for a new observation t*, of the random variable T,
in light of the observed data. All parameter uncertainty is
integrated out to give a posterior predictive density:

Fric@ 10 = [ fr19(t 19) faiz@ds |1
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Introduction

Reminder of some probability densities

X ~ Beta(a, ) a>0,>0
a—1/1 _ \B—1
— fx(z) =" éza ;")) , z€[0,1]
X ~ Binomial(n, p) neN,pe[0,1]
= fx(z) = (Z)pm(l —p)" 7, ze€{0,1,...,n}
X ~ Beta-binomial(n, «, 3) neN,a>0,6>0
— fX(:v)=<Z>B(x+§(’2;)x+ﬁ), ze€{0,1,...,n}
. I'(a)l' -DH(B-1!,
with B(a, §) := F((Z)+(§)) (: (O‘(a +) B(é 1)!) if o, 8 € N+>
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Introduction

Problem Setting
Test data available on components to be used in a system

Objective: Bayesian inference on system/network reliability

given component test data

@ — trE
@ — zKé{t{(,...,th{K}q

’ nl} -

8/32



Nonparametric method

Nonparametric method

9/32



Nonparametric method

A nonparametric model for components

At a fixed time ¢, probability component of type & functions is
Bernoulli(p¥) for some unknown p¥.

— number functioning at time ¢ in iid batch of ny is
Binomial(ng, p).
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Nonparametric method

A nonparametric model for components

At a fixed time ¢, probability component of type & functions is
Bernoulli(p¥) for some unknown p¥.

— number functioning at time ¢ in iid batch of ny is
Binomial(ng, p).

Let S} € {0,1,...,n;} be number of working components in
test batch of n; components of type k. Then,

S¥ ~ Binomial(ny, pf) Vt > 0

Given test data t* = {¢f,... ¥ }, for each t we can form
corresponding observation from Binomial model

ng
s 23 It > 1)
1=1
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Nonparametric method

Bayesian inference for nonparametric model

Taking prior pf ~ Beta(al, 8F), exploit conjugacy result
pf | sy ~ Beta(ay + sy, B + ng — s)

Then, posterior predicitive for number of components
surviving in a new batch of m; components is

CF | sF ~ Beta-binomial(my, af + s, BF + nj, — sF)
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Nonparametric method

Bayesian inference for nonparametric model

Taking prior pf ~ Beta(al, 8F), exploit conjugacy result
pf | sy ~ Beta(ay + sy, B + ng — s)

Then, posterior predicitive for number of components
surviving in a new batch of m; components is

CF | sF ~ Beta-binomial(my, af + s, BF + nj, — sF)

Summary: for any fixed ¢, s¥ provides a minimal sufficient
statistic for computing posterior predictive distribution of the
number of components surviving to ¢ in a new batch, without
any parametric model for component lifetime being assumed.
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Nonparametric method

Adding imprecision (see Frank’s talk)

Imprecision can be added via prior sets for the Beta
distribution. Hard to specify on «, 3, so best to reparameterise:

n=a+f y=

e y is prior expectation of the probability, p, that the
component functions;

* n is prior strength, since

y(1-y)

Var(p) = = 7

Indeed, can interpret directly as a pseudocount.
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Adding imprecision (see Frank’s talk)

Imprecision can be added via prior sets for the Beta
distribution. Hard to specify on «, 3, so best to reparameterise:

n=a+f y=

e y is prior expectation of the probability, p, that the
component functions;

* n is prior strength, since

y(1-y)

Var(p) = = 7

Indeed, can interpret directly as a pseudocount.

Then we specify a prior set

I = [n,7] x [y,7]
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Nonparametric method

Propagating uncertainty to the system

Now take collection of component types k € {1,..., K}, each
with test data ¢t = {t!,... ,zk}, and corresponding collection of
minimal sufficient statistics for a fixed ¢, {s},...sX}.
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Nonparametric method

Propagating uncertainty to the system

Now take collection of component types k € {1,..., K}, each
with test data ¢t = {t!,... ,zk}, and corresponding collection of
minimal sufficient statistics for a fixed ¢, {s},...sX}.

Survival probability for a new system S* comprising these
component types follows naturally via posterior predictive and
surival signature:

P(Ts« > t|st,...s5)

= [ [ P > gk )P |5 PG |5E)

/ /Z Z (h,. -k (ﬂ{ct I | P )]

11=0 lg=0

(dpt ‘St) (dpt ’3t )
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Nonparametric method

P(TS*>t|5%,...sf()
:/.../P(TS* >t|pt,...pf )P(dpy | st) ... P(dpf | si)

_/ /[Z Zcbh,..., (m{ck zk\pt>]

11=0 Ilx=0
(dpt|st)°"P( pt |St)

S Y Bk H/PCt Ui | pF) P(dpf | sF)

Final integral is simply the posterior predictive

(Beta-binomial). 14/32



Nonparametric method

System survival probability

9 ﬁ mi\ Bl + of + sf,my — U + BF + ny — s7)
B(af + sf, BF + i, — sf)

Incredibly easy to implement this algorithmically since
survival signature has factorised the survival function by
component type!
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Nonparametric method

Why not structure function?

o) =[] (1— H(l—x»)

j=1 1€C;

where {C1, ..., s} is the collection of minimal cut sets of the
system. Recall don’t need x € {0,1} — we can plug in
probabilities. So why not?
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Why not structure function?

o) =[] (1— H(l—x»)

j=1 1€C;

where {C1, ..., s} is the collection of minimal cut sets of the
system. Recall don’t need x € {0,1} — we can plug in
probabilities. So why not?

P(Tss > t]s},...s%)

:/.../¢(pfl,...,pfn)P(dp§|st1)---P(dptK\Sf<)

where p{* is the element of {p},...,pX} corresponding to
component i (i.e. component i is of type z;)

Have fun with that integral for large K ... !
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Example

Example system layout, K =4, n = 11
Example system:
Ty ~ Exp(A\; = 0.55)

T2 ~ WEI()\Q = 1.8,’71 = 22)

Ty ~ Log-N(u = 0.4, 7 = 1.234)

Ty ~ Gam(/\g = 0.9,’}/2 = 3.2)

Simulated test data with n, = 100V &
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Example

Posterior predictive survival curves

0.50 =

Survival Probability

)
St
1

0.00 =

Time

Item
— System

- T1
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Example

Optimal redundancy?

1.00 = Redundancy
— Comp 1

===+ Comp 10
0.75 = == Comp 11
= = Comp 2
<+ Comp 3
0.50 = "= Comp 4
— = Comp 5

-—- Comp 6

Survival Probability

+==- Comp 7

[\
Ut
1

— Comp 8
— Comp 9

--=- None

0.00 =

Time
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Example

Optimal redundancy?

8- Redundancy
g 7= — Comp 7
e
5 G- ===+ Comp 8

_ —=- None

Time
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Parametric Method
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Parametric Method

Parametric models of components

The survival signature achieves the same factorisation of
system lifetime when using parametric models for the
components.

Model the lifetime of component & directly via likelihood
function f

T ~ fr(t;dg)

As before, given test data t* = {t}, ... ¢ } for component £,
posterior density is:

Fag v (0 [£5) o fa (i) TT £t )

i=1
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Parametric Method

P(Tss > t|th,...t5)

:/.../P(TS* >t 1, k) f g (1 1) o fy o (e [ £5)
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Parametric Method

P(Ts- > t|t!,...t%)
:/h"'/‘P(TS* >t‘¢17._,77[)[()f\1,1|z1(d1/11|j1),,,f‘1/K‘IK(dﬂ)K|§K)
mi mg K
:// ooy @(11,...,1K)P<ﬂ{ct’“:lkwﬁ)]
k=1

[1=0 lg=0
X f\I’l |Il(d¢1 |t1) .. f\IjK|IK(dwK ‘EK)
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Parametric Method

P(Tss > t|th,...t5)

_ /.../P(TS* >t 1, k) f g (1 1) o fy o (e [ £5)

:// Z Z@ll,..., (ﬂ{C —lkwk}>]

[1=0 lg=0
Xf\p1|T1(d¢1 'fq;K|IK(d¢K‘t )
:// Z Zcpll,...,
11=0 lx=0

x H (7:) [E3(t: on)] ™~ [1 = Fy(t; wk)]lk]
pte}

X fy, |r(dir ). oy rx (VK %)
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Parametric Method

P(Ts« > t|th, ... tF)

_/ /[Z S @l

h=0  lx=0
( ) £ )] T [ — Fy(t; )]

| Tt dlﬁu) f\p | TK dwK‘t )

= % nff o(ly, ..., lx)

11=0 lK—O

x H (mk>/ G R (L = Fi(t )] fy o (diby [ £F)

“” ?::M

Final term posterior predictive of I, components of type &

surviving to ¢.
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Parametric Method

Computing the integral for arbitrary models

Four possibilities. The posterior, fy,, T (dapy, | £9), is:

@ in closed form and integral tractable;
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@ in closed form and integral tractable; — easy
® known distribution, intractable integral;

Note the integral is just:
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Thus, for samples w,(:), . ,w,E;N) ~ Uy | TF we can always fall
back to evaluating:
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Four possibilities. The posterior, fy,, T (dapy, | £9), is:

@ in closed form and integral tractable; — easy
® known distribution, intractable integral; — Monte Carlo

Note the integral is just:
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Four possibilities. The posterior, fy,, T (dapy, | £9), is:

@ in closed form and integral tractable; — easy

® known distribution, intractable integral; — Monte Carlo
® known upto normalising constant; — Markov-chain MC
@ unknown, due to black-box component model.

Note the integral is just:
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Computing the integral for arbitrary models

Four possibilities. The posterior, fy,, T (dapy, | £9), is:

@ in closed form and integral tractable; — easy

® known distribution, intractable integral; — Monte Carlo
® known upto normalising constant; — Markov-chain MC
@ unknown, due to black-box component model. — ABC

Note the integral is just:

By, [[Fk(tQ i)™ - Fk(t;wk)]lk}
Thus, for samples w,(:), . ,w,E;N) ~ Uy | TF we can always fall
back to evaluating:
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Example

Posterior predictive survival curves for both methods

1.00 -

Item
— Ground Truth
===+ Non-parametric

—=—+ Parametric

Survival Probability
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Software

Software
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Software

R package: ReliabilityTheory

library(”ReliabilityTheory”)

sys <- graph.formula(s -- 1 -2 —— t, s —— 3 —— 4 —— t,
1--5--2,3-—-5--14)
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Software

R package: ReliabilityTheory

T1 T2

D &)
.6
3 @D

T1 T2

sys <— graph.formula(s -- 1 -- 2 —— t, s -— 3 —— 4 — t,
1--5--2,3--5--14)

sys <— setCompTypes(sys, list(”T1” = c(1, 3),
"T2" = c(2, 4),
IIT3H = C(S)))

sig <- computeSystemSurvivalSignature(sys)
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