Statistical methods for system reliability

Louis J. M. Aslett (louis.aslett@durham.ac.uk) Department of Mathematical Sciences Durham University

UTOPIAE Training School 22 November 2017

Introduction Nonparametric method Example Parametric Method Example Software

About me

- Cryptography and statistics privacy preserving methodology
- Reliability theory
- Computational statistics, HPC for:
 - Markov-chain Monte Carlo on MPI clusters and GPUs
 - Hidden Markov Model acceleration for statistical genetics
 - · machine learning
- Stats software
 - ReliabilityTheory, HomomorphicEncryption, ...
 - RStudio AMIs for Amazon Web Services (incl Julia)

Bayesian inference

• Data: $\underline{t} = \{t_1, \dots, t_n\}$

Bayesian inference

- Data: $\underline{t} = \{t_1, \dots, t_n\}$
- Model: \underline{t} is the realisation of a random vector \underline{T} having probability density $f_{T|\Psi}(\cdot|\psi)$, where ψ is an unknown parameter. $f_{T|\Psi}(\underline{t}|\cdot)$ is the *likelihood*.

Bayesian inference

- Data: $\underline{t} = \{t_1, \dots, t_n\}$
- Model: \underline{t} is the realisation of a random vector \underline{T} having probability density $f_{T|\Psi}(\cdot|\psi)$, where ψ is an unknown parameter. $f_{T|\Psi}(\underline{t}|\cdot)$ is the *likelihood*.
- Prior: all knowledge about ψ which is not contained in \underline{t} is expressed via *prior* density $f_{\Psi}(\psi)$.

Bayesian inference

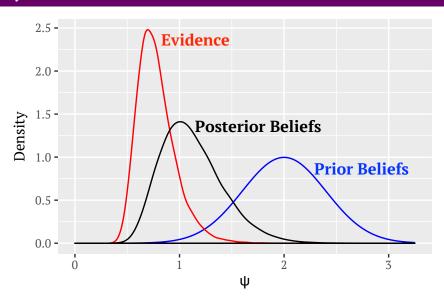
Introduction

- Data: $\underline{t} = \{t_1, \dots, t_n\}$
- Model: \underline{t} is the realisation of a random vector \underline{T} having probability density $f_{T|\Psi}(\cdot|\psi)$, where ψ is an unknown parameter. $f_{T|\Psi}(\underline{t}|\cdot)$ is the *likelihood*.
- Prior: all knowledge about ψ which is not contained in \underline{t} is expressed via *prior* density $f_{\Psi}(\psi)$.
- Posterior: Bayes' Theorem enables us to rationally update the prior to our *posterior* belief in light of the new evidence (data).

Bayes' Theorem

$$f_{\Psi \mid T}(\psi \mid \underline{t}) = \frac{f_{T \mid \Psi}(\underline{t} \mid \psi) f_{\Psi}(\psi)}{\int_{\Omega} f_{T \mid \Psi}(\underline{t} \mid \psi) f_{\Psi}(d\psi)} \quad \propto f_{T \mid \Psi}(\underline{t} \mid \psi) f_{\Psi}(\psi)$$

Bayesian inference



Bayesian inference: prediction

Bayesian inference provides a natural method to perform prediction for a new observation t^* , of the random variable T, in light of the observed data. All parameter uncertainty is integrated out to give a *posterior predictive density*:

$$f_{T \mid \underline{T}}(t^{\star} \mid \underline{t}) = \int f_{T \mid \Psi}(t^{\star} \mid \psi) f_{\Psi \mid \underline{T}}(d\psi \mid \underline{t})$$

Reminder of some probability densities

$$X \sim \text{Beta}(\alpha, \beta)$$
 $\alpha > 0$

$$\implies f_X(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha,\beta)},$$

$$\alpha > 0, \beta > 0$$

$$\frac{(1-x)}{B(\alpha,\beta)}, \qquad x \in [0,1]$$

$$X \sim \text{Binomial}(n, p)$$

$$n\in\mathbb{N},p\in[0,1]$$

$$\implies f_X(x) = \binom{n}{x} p^x (1-p)^{n-x},$$

$$, x \in \{0, 1, \dots, n\}$$

$$(x)$$
 $X \sim \text{Beta-binomial}(n, \alpha, \beta)$

$$n \in \mathbb{N}, \alpha > 0, \beta > 0$$

 $x \in \{0, 1, \dots, n\}$

$$\implies f$$

Introduction

$$\implies f_X(x) = \binom{n}{x} \frac{B(x+\alpha, n-x+\beta)}{B(\alpha, \beta)}, \quad x \in \{0, 1, \dots, n\}$$

with
$$B(\alpha, \beta) := \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)} \quad \left(= \frac{(\alpha - 1)!(\beta - 1)!}{(\alpha + \beta - 1)!} \text{ if } \alpha, \beta \in \mathbb{N}^+ \right)$$

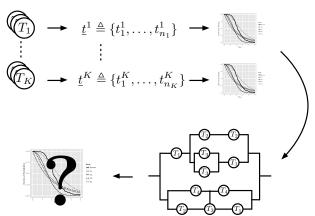
$$\implies f_X(x)$$

Problem Setting

Introduction

Test data available on components to be used in a system.

Objective: Bayesian inference on system/network reliability given component test data.



Nonparametric method

A nonparametric model for components

At a fixed time t, probability component of type k functions is Bernoulli(p_t^k) for some unknown p_t^k .

 \implies number functioning at time t in iid batch of n_k is Binomial (n_k, p_t^k) .

Parametric Method

Software

A nonparametric model for components

At a fixed time t, probability component of type k functions is Bernoulli(p_t^k) for some unknown p_t^k .

 \implies number functioning at time t in iid batch of n_k is Binomial (n_k, p_t^k) .

Let $S_t^k \in \{0, 1, \dots, n_k\}$ be number of working components in test batch of n_k components of type k. Then,

$$S_t^k \sim \text{Binomial}(n_k, p_t^k) \ \forall \, t > 0$$

Parametric Method

Software

A nonparametric model for components

At a fixed time t, probability component of type k functions is Bernoulli (p_t^k) for some unknown p_t^k .

 \implies number functioning at time t in iid batch of n_k is Binomial (n_k, p_t^k) .

Let $S_t^k \in \{0, 1, \dots, n_k\}$ be number of working components in test batch of n_k components of type k. Then,

$$S_t^k \sim \text{Binomial}(n_k, p_t^k) \ \forall \, t > 0$$

Given test data $\underline{t}^k = \{t_1^k, \dots, t_{n_k}^k\}$, for each t we can form corresponding observation from Binomial model

$$s_t^k \triangleq \sum_{i=1}^{n_k} \mathbb{I}(t_i^k > t)$$

Parametric Method

Software

Bayesian inference for nonparametric model

Taking prior $p_t^k \sim \text{Beta}(\alpha_t^k, \beta_t^k)$, exploit conjugacy result

$$p_t^k \mid s_t^k \sim \text{Beta}(\alpha_t^k + s_t^k, \beta_t^k + n_k - s_t^k)$$

Then, posterior predicitive for number of components surviving in a new batch of m_k components is

$$C_t^k \mid s_t^k \sim \text{Beta-binomial}(m_k, \alpha_t^k + s_t^k, \beta_t^k + n_k - s_t^k)$$

Bayesian inference for nonparametric model

Taking prior $p_t^k \sim \text{Beta}(\alpha_t^k, \beta_t^k)$, exploit conjugacy result

$$p_t^k \mid s_t^k \sim \text{Beta}(\alpha_t^k + s_t^k, \beta_t^k + n_k - s_t^k)$$

Then, posterior predicitive for number of components surviving in a new batch of m_k components is

$$C_t^k \mid s_t^k \sim \text{Beta-binomial}(m_k, \alpha_t^k + s_t^k, \beta_t^k + n_k - s_t^k)$$

Summary: for any fixed t, s_t^k provides a minimal sufficient statistic for computing posterior predictive distribution of the number of components surviving to t in a new batch, without any parametric model for component lifetime being assumed.

Software

Adding imprecision (see Frank's talk)

Imprecision can be added via prior sets for the Beta distribution. Hard to specify on α , β , so best to reparameterise:

$$n = \alpha + \beta \qquad \qquad y = \frac{\alpha}{\alpha + \beta}$$

- y is prior expectation of the probability, p, that the component functions;
- n is prior strength, since

$$Var(p) = \frac{y(1-y)}{n+1}$$

Indeed, can interpret directly as a *pseudocount*.

Software

Adding imprecision (see Frank's talk)

Imprecision can be added via prior sets for the Beta distribution. Hard to specify on α , β , so best to reparameterise:

$$n = \alpha + \beta \qquad \qquad y = \frac{\alpha}{\alpha + \beta}$$

- y is prior expectation of the probability, p, that the component functions;
- n is prior strength, since

$$Var(p) = \frac{y(1-y)}{n+1}$$

Indeed, can interpret directly as a pseudocount.

Then we specify a prior set

$$\Pi = [\underline{n}, \overline{n}] \times [\underline{y}, \overline{y}]$$

Propagating uncertainty to the system

Now take collection of component types $k \in \{1, ..., K\}$, each with test data $\underline{t} = \{\underline{t}^1, ..., \underline{t}^k\}$, and corresponding collection of minimal sufficient statistics for a fixed $t, \{s_t^1, ..., s_t^K\}$.

Software

Propagating uncertainty to the system

Now take collection of component types $k \in \{1, \ldots, K\}$, each with test data $\underline{t} = \{\underline{t}^1, \ldots, \underline{t}^k\}$, and corresponding collection of minimal sufficient statistics for a fixed $t, \{s_t^1, \ldots, s_t^K\}$.

Survival probability for a new system S^* comprising these component types follows naturally via posterior predictive and surival signature:

$$P(T_{S^*} > t \mid s_t^1, \dots s_t^K) = \int \dots \int P(T_{S^*} > t \mid p_t^1, \dots p_t^K) P(dp_t^1 \mid s_t^1) \dots P(dp_t^K \mid s_t^K)$$

Parametric Method

Software

Propagating uncertainty to the system

Now take collection of component types $k \in \{1, ..., K\}$, each with test data $\underline{t} = \{\underline{t}^1, \dots, \underline{t}^k\}$, and corresponding collection of minimal sufficient statistics for a fixed t, $\{s_t^1, \dots s_t^K\}$.

Survival probability for a new system S^* comprising these component types follows naturally via posterior predictive and surival signature:

$$\begin{split} &P(T_{S^{\star}} > t \mid s_{t}^{1}, \dots s_{t}^{K}) \\ &= \int \dots \int P(T_{S^{\star}} > t \mid p_{t}^{1}, \dots p_{t}^{K}) P(dp_{t}^{1} \mid s_{t}^{1}) \dots P(dp_{t}^{K} \mid s_{t}^{K}) \\ &= \int \dots \int \left[\sum_{l_{1}=0}^{m_{1}} \dots \sum_{l_{K}=0}^{m_{K}} \Phi(l_{1}, \dots, l_{K}) P\left(\bigcap_{k=1}^{K} \{C_{t}^{k} = l_{k} \mid p_{t}^{k}\}\right) \right] \\ &\qquad \times P(dp_{t}^{1} \mid s_{t}^{1}) \dots P(dp_{t}^{K} \mid s_{t}^{K}) \end{split}$$

Parametric Method

Software

$$P(T_{S^*} > t \mid s_t^1, \dots s_t^K)$$

$$= \int \dots \int P(T_{S^*} > t \mid p_t^1, \dots p_t^K) P(dp_t^1 \mid s_t^1) \dots P(dp_t^K \mid s_t^K)$$

$$= \int \cdots \int \left[\sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \dots, l_K) P\left(\bigcap_{k=1}^K \{C_t^k = l_k \mid p_t^k\} \right) \right] \times P(dp_t^1 \mid s_t^1) \dots P(dp_t^K \mid s_t^K)$$

$$= \sum_{l_1=0}^{m_1} \cdots \sum_{l_K=0}^{m_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^K \int P(C_t^k = l_k \mid p_t^k) P(dp_t^k \mid s_t^k)$$

Final integral is simply the posterior predictive (Beta-binomial).

Introduction

$$P(T_{S^*} > t \mid s_t^1, \dots s_t^K)$$

$$= \sum_{l_1=0}^{m_1} \dots \sum_{l_K=0}^{m_K} \Phi(l_1, \dots, l_K)$$

$$\times \prod_{k=1}^K \binom{m_k}{l_k} \frac{B(l_k + \alpha_t^k + s_t^k, m_k - l_k + \beta_t^k + n_k - s_t^k)}{B(\alpha_t^k + s_t^k, \beta_t^k + n_k - s_t^k)}$$

Incredibly easy to implement this algorithmically since survival signature has factorised the survival function by component type!

Why not structure function?

$$\phi(\underline{x}) = \prod_{j=1}^{s} \left(1 - \prod_{i \in C_j} (1 - x_i) \right)$$

where $\{C_1, \ldots, C_s\}$ is the collection of minimal cut sets of the system. Recall don't need $x \in \{0,1\}$ — we can plug in probabilities. So why not?

Parametric Method

Software

Why not structure function?

Introduction

$$\phi(\underline{x}) = \prod_{j=1}^{s} \left(1 - \prod_{i \in C_j} (1 - x_i) \right)$$

where $\{C_1, \ldots, C_s\}$ is the collection of minimal cut sets of the system. Recall don't need $x \in \{0,1\}$ — we can plug in probabilities. So why not?

$$P(T_{S^*} > t \mid s_t^1, \dots s_t^K)$$

$$= \int \dots \int \phi(p_t^{x_1}, \dots, p_t^{x_n}) P(dp_t^1 \mid s_t^1) \dots P(dp_t^K \mid s_t^K)$$

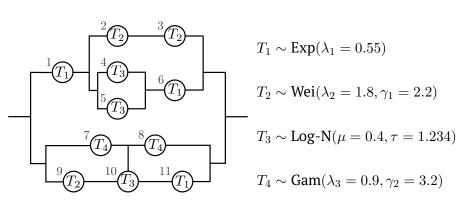
where $p_t^{x_i}$ is the element of $\{p_t^1, \dots, p_t^K\}$ corresponding to component i (i.e. component i is of type x_i)

Have fun with that integral for large $K \dots$!

Example system layout, K = 4, n = 11

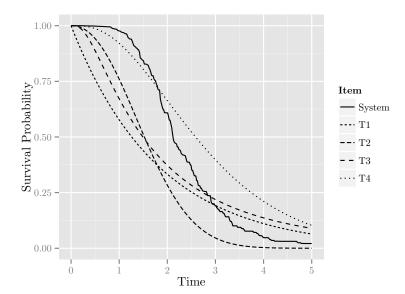
Example system:

Introduction

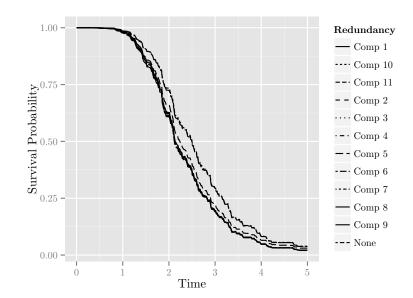


Simulated test data with $n_k = 100 \ \forall k$

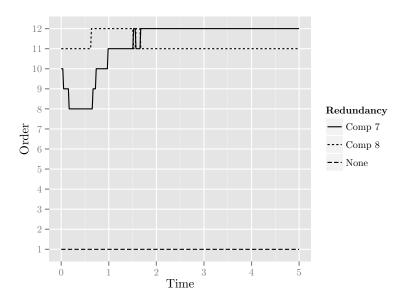
Posterior predictive survival curves



Optimal redundancy?



Optimal redundancy?



Software

Parametric models of components

The survival signature achieves the same factorisation of system lifetime when using parametric models for the components.

Model the lifetime of component k directly via likelihood function f_k

$$T_k \sim f_k(t; \psi_k)$$

As before, given test data $\underline{t}^k = \{t_1^k, \dots, t_{n_k}^k\}$ for component k, posterior density is:

$$f_{\Psi_k \mid \underline{T}^k}(\psi_k \mid \underline{t}^k) \propto f_{\Psi_k}(\psi_k) \prod_{i=1}^{n_k} f_k(t_i^k; \psi_k)$$

Parametric Method

Parametric Method

Parametric Method

 $\times f_{\Psi_1 \perp T^1}(d\psi_1 \mid \underline{t}^1) \dots f_{\Psi_K \perp T^K}(d\psi_K \mid \underline{t}^K)$

Nonparametric method

Introduction

Software

Software

Final term posterior predictive of l_k components of type ksurviving to t.

Computing the integral for arbitrary models

Four possibilities. The posterior, $f_{\Psi_k \mid T^k}(d\psi_k \mid \underline{t}^k)$, is:

1 in closed form and integral tractable;

Computing the integral for arbitrary models

Four possibilities. The posterior, $f_{\Psi_k \mid T^k}(d\psi_k \mid \underline{t}^k)$, is:

 $oldsymbol{1}$ in closed form and integral tractable; ightarrow easy

Computing the integral for arbitrary models

Four possibilities. The posterior, $f_{\Psi_k\,|\,T^k}(d\psi_k\,|\,\underline{t}^k)$, is:

- $oldsymbol{1}$ in closed form and integral tractable; $ightarrow \mathbf{easy}$
- 2 known distribution, intractable integral;

Introduction

Computing the integral for arbitrary models

Four possibilities. The posterior, $f_{\Psi_k \mid T^k}(d\psi_k \mid \underline{t}^k)$, is:

- $oldsymbol{0}$ in closed form and integral tractable; \rightarrow **easy**
- known distribution, intractable integral;

Note the integral is just:

$$\mathbb{E}_{\Psi_k \mid \underline{T}^k} \left[[F_k(t; \psi_k)]^{m_k - l_k} [1 - F_k(t; \psi_k)]^{l_k} \right]$$

Computing the integral for arbitrary models

Four possibilities. The posterior, $f_{\Psi_k \mid T^k}(d\psi_k \mid \underline{t}^k)$, is:

- **1** in closed form and integral tractable; \rightarrow **easy**
- 2 known distribution, intractable integral;

Note the integral is just:

$$\mathbb{E}_{\Psi_k \mid T^k} \left[[F_k(t; \psi_k)]^{m_k - l_k} [1 - F_k(t; \psi_k)]^{l_k} \right]$$

Thus, for samples $\psi_k^{(1)}, \dots, \psi_k^{(N)} \sim \Psi_k \,|\, \underline{T}^k$ we can always fall back to evaluating:

$$\frac{1}{N} \sum_{i=1}^{N} [F_k(t; \psi_k^{(i)})]^{m_k - l_k} [1 - F_k(t; \psi_k^{(i)})]^{l_k}$$

Computing the integral for arbitrary models

Four possibilities. The posterior, $f_{\Psi_k \mid T^k}(d\psi_k \mid \underline{t}^k)$, is:

- **1** in closed form and integral tractable; \rightarrow **easy**
- 2 known distribution, intractable integral; → **Monte Carlo**

Note the integral is just:

$$\mathbb{E}_{\Psi_k \mid T^k} \left[[F_k(t; \psi_k)]^{m_k - l_k} [1 - F_k(t; \psi_k)]^{l_k} \right]$$

Thus, for samples $\psi_k^{(1)}, \dots, \psi_k^{(N)} \sim \Psi_k \,|\, \underline{T}^k$ we can always fall back to evaluating:

$$\frac{1}{N} \sum_{i=1}^{N} [F_k(t; \psi_k^{(i)})]^{m_k - l_k} [1 - F_k(t; \psi_k^{(i)})]^{l_k}$$

$$\xrightarrow{N\to\infty} \mathbb{E}_{\Psi_k \mid \underline{T}^k} \left[[F_k(t; \psi_k)]^{m_k - l_k} [1 - F_k(t; \psi_k)]^{l_k} \right]$$

Software

Computing the integral for arbitrary models

Four possibilities. The posterior, $f_{\Psi_k \mid T^k}(d\psi_k \mid \underline{t}^k)$, is:

- **1** in closed form and integral tractable; \rightarrow **easy**
- **2** known distribution, intractable integral; \rightarrow **Monte Carlo**
- 3 known upto normalising constant;

Note the integral is just:

$$\mathbb{E}_{\Psi_k \mid T^k} \left[[F_k(t; \psi_k)]^{m_k - l_k} [1 - F_k(t; \psi_k)]^{l_k} \right]$$

Thus, for samples $\psi_k^{(1)}, \dots, \psi_k^{(N)} \sim \Psi_k \,|\, \underline{T}^k$ we can always fall back to evaluating:

$$\frac{1}{N} \sum_{i=1}^{N} [F_k(t; \psi_k^{(i)})]^{m_k - l_k} [1 - F_k(t; \psi_k^{(i)})]^{l_k}$$

Introduction

Software

Computing the integral for arbitrary models

Four possibilities. The posterior, $f_{\Psi_k \mid T^k}(d\psi_k \mid \underline{t}^k)$, is:

- **1** in closed form and integral tractable; \rightarrow **easy**
- 2 known distribution, intractable integral; \rightarrow Monte Carlo
- **3** known upto normalising constant; \rightarrow Markov-chain MC

Note the integral is just:

$$\mathbb{E}_{\Psi_k \mid T^k} \left[[F_k(t; \psi_k)]^{m_k - l_k} [1 - F_k(t; \psi_k)]^{l_k} \right]$$

Thus, for samples $\psi_k^{(1)}, \dots, \psi_k^{(N)} \sim \Psi_k \mid T^k$ we can always fall back to evaluating:

$$\frac{1}{N} \sum_{i=1}^{N} [F_k(t; \psi_k^{(i)})]^{m_k - l_k} [1 - F_k(t; \psi_k^{(i)})]^{l_k}$$

Computing the integral for arbitrary models

Four possibilities. The posterior, $f_{\Psi_k \mid T^k}(d\psi_k \mid \underline{t}^k)$, is:

- **1** in closed form and integral tractable; \rightarrow **easy**
- 2 known distribution, intractable integral; \rightarrow Monte Carlo
- **3** known upto normalising constant; \rightarrow Markov-chain MC
- 4 unknown, due to black-box component model.

Note the integral is just:

$$\mathbb{E}_{\Psi_k \mid \underline{T}^k} \left[[F_k(t; \psi_k)]^{m_k - l_k} [1 - F_k(t; \psi_k)]^{l_k} \right]$$

Thus, for samples $\psi_k^{(1)}, \dots, \psi_k^{(N)} \sim \Psi_k \mid T^k$ we can always fall back to evaluating:

$$\frac{1}{N} \sum_{i=1}^{N} [F_k(t; \psi_k^{(i)})]^{m_k - l_k} [1 - F_k(t; \psi_k^{(i)})]^{l_k}$$

$$\xrightarrow{N \to \infty} \mathbb{E}_{\Psi_k \mid \underline{T}^k} \left[[F_k(t; \psi_k)]^{m_k - l_k} [1 - F_k(t; \psi_k)]^{l_k} \right]$$

Computing the integral for arbitrary models

Four possibilities. The posterior, $f_{\Psi_k \mid T^k}(d\psi_k \mid \underline{t}^k)$, is:

- lacktriangle in closed form and integral tractable; \rightarrow easy
- 2 known distribution, intractable integral; → Monte Carlo
- **3** known upto normalising constant; → Markov-chain MC
- $oldsymbol{4}$ unknown, due to black-box component model. ightarrow ABC

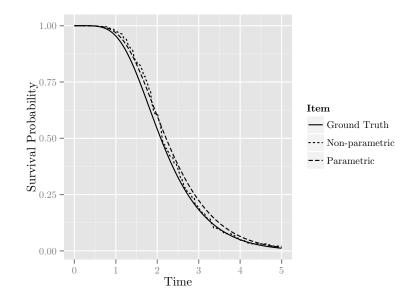
Note the integral is just:

$$\mathbb{E}_{\Psi_k \mid T^k} \left[[F_k(t; \psi_k)]^{m_k - l_k} [1 - F_k(t; \psi_k)]^{l_k} \right]$$

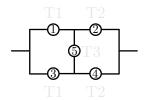
Thus, for samples $\psi_k^{(1)},\dots,\psi_k^{(N)}\sim \Psi_k\,|\,\underline{T}^k$ we can always fall back to evaluating:

$$\frac{1}{N} \sum_{i=1}^{N} [F_k(t; \psi_k^{(i)})]^{m_k - l_k} [1 - F_k(t; \psi_k^{(i)})]^{l_k} \\
\xrightarrow{N \to \infty} \mathbb{E}_{\Psi_k \mid \underline{T}^k} \left[[F_k(t; \psi_k)]^{m_k - l_k} [1 - F_k(t; \psi_k)]^{l_k} \right]$$

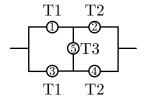
Posterior predictive survival curves for both methods



R package: ReliabilityTheory



R package: ReliabilityTheory



References

Introduction

Aslett, L. J. M., Coolen, F. P. A. and Wilson, S. P. (2015), 'Bayesian Inference for Reliability of Systems and Networks using the Survival Signature', *Risk Analysis* **35**(9), 1640–1651.

Walter, G., Aslett, L. J. M. and Coolen, F. P. A. (2017), 'Bayesian Nonparametric System Reliability using Sets of Priors', *International Journal of Approximate Reasoning* **80**, 67–88.

Aslett, L. J. M. (2016), Cryptographically secure multiparty evaluation of system reliability. arXiv:1604.05180 [cs.CR]

Aslett, L. J. M., Nagapetyan, T. and Vollmer, S. J. (2017), 'Multilevel Monte Carlo for Reliability Theory', *Reliability Engineering and System Safety* **165**, 188–196.