
1/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Taming the inner loop

Louis J. M. Aslett (aslett@stats.ox.ac.uk)

Department of Statistics, University of Oxford

Young Researchers’ Meeting
8 November 2016: University of Warwick

www.louisaslett.com

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/
mailto:aslett@stats.ox.ac.uk

2/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Background

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

3/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Thank-you for having me back!

October 2015 talk for Young Researchers’ Meeting entitled
‘Background on HPC for Statistics’.

Discussed fundamental importance of parallelism, giving a
mostly code-free introduction to GPUs and cloud computing.

This year, would like to talk more generally than the
multi-core, many-core and cluster parallelism buzz. We’ll dive
a little deeper on getting the most from the machine that
probably sits on your desk.

• Modern CPU architectures
• Implications for programming
• Importance of memory

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

3/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Thank-you for having me back!

October 2015 talk for Young Researchers’ Meeting entitled
‘Background on HPC for Statistics’.

Discussed fundamental importance of parallelism, giving a
mostly code-free introduction to GPUs and cloud computing.

This year, would like to talk more generally than the
multi-core, many-core and cluster parallelism buzz. We’ll dive
a little deeper on getting the most from the machine that
probably sits on your desk.

• Modern CPU architectures
• Implications for programming
• Importance of memory

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

4/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Bayesian statistics & computing

• 1970s reliance on conjugacy results abounds (e.g. skim
classic Box and Tiao 1973)

• 1990s MCMC techniques go mainstream opening up all
sorts of models (sampler slow? Just wait a year!)

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

4/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Bayesian statistics & computing

• 1970s reliance on conjugacy results abounds (e.g. skim
classic Box and Tiao 1973)

• 1990s MCMC techniques go mainstream opening up all
sorts of models (sampler slow? Just wait a year!)

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

5/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

‘The free lunch is over’ — Herb Sutter

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

6/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

‘The free lunch is over’ — Herb Sutter

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

7/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Bayesian statistics & computing

• 1970s reliance on conjugacy results abounds (e.g. skim
classic Box and Tiao 1973)

• 1990s MCMC techniques go mainstream opening up all
sorts of models (sampler slow? Just wait a year!)

• 2010s trying to make MCMC parallel friendly firmly
embedded as an important research direction

• July 2006 Intel ship first desktop class dual core CPU
• August 2006 Amazon EC2 launches as a public beta
(production in 2008)

• November 2006 nVidia announce CUDA, first ever C
development environment for GPUs

• ≈ 9 years later:
• 12 core Intel Xeon CPUs (/w 30MB cache)
• 2 × 2, 496 core Tesla K80 GPUs (/w 12GB GDDR)
• ≥ 50, 000 core EC2 clusters launched (/w 29TB RAM)

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

7/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Bayesian statistics & computing

• 1970s reliance on conjugacy results abounds (e.g. skim
classic Box and Tiao 1973)

• 1990s MCMC techniques go mainstream opening up all
sorts of models (sampler slow? Just wait a year!)

• 2010s trying to make MCMC parallel friendly firmly
embedded as an important research direction

• July 2006 Intel ship first desktop class dual core CPU
• August 2006 Amazon EC2 launches as a public beta
(production in 2008)

• November 2006 nVidia announce CUDA, first ever C
development environment for GPUs

• ≈ 9 years later:
• 12 core Intel Xeon CPUs (/w 30MB cache)
• 2 × 2, 496 core Tesla K80 GPUs (/w 12GB GDDR)
• ≥ 50, 000 core EC2 clusters launched (/w 29TB RAM)

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

8/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Massively simplified architecture

CPU

Motherboard
Chipset

Hard
Drive

GPU

6G
B

G
D

D
R

32
G

B
D

D
R3L1

L2

L1
L2

L1
L2

L1
L2

L3

Network

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

9/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

But …

… let’s take a step back.

Many core parallelism isn’t the whole picture.

Modern CPUs are:

1 super-scalar;
2 pipelined;
3 with dynamic execution;
4 speculative execution (including branch prediction);
5 per core hyper-threading;
6 vector instruction units;
7 and large hierarchical caches.

We’ll dig into these points today, which are not directly related
to many-core processing.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

9/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

But …

… let’s take a step back.

Many core parallelism isn’t the whole picture.

Modern CPUs are:

1 super-scalar;
2 pipelined;
3 with dynamic execution;
4 speculative execution (including branch prediction);
5 per core hyper-threading;
6 vector instruction units;
7 and large hierarchical caches.

We’ll dig into these points today, which are not directly related
to many-core processing.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

10/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Aim today

• Hopefully most of you find it interesting in itself!

• Perhaps useful to a few people with short tight inner
looped code to speed up.

• There are few recipies … hence deep understanding is key.
• But, whatever you do, please don’t do this for all your code.
Profile and then optimise only what’s slow!

• Typically, a few hotspots account for most of your runtime.
• e.g. Genetics application:

• half dozen lines of code account for > 99% of runtime
• Chromopainter < 5, 000, 000 elements of HMM forward
equation per second.

• our problem specific optimized code ≈ 2, 000, 000, 000
elements of HMM forward equation per second on a single
laptop CPU core =⇒ 55 hours1 for full forward sweep of
Malaria data (≈ 20, 000 individuals, ≈ 1, 000, 000 loci) on
one core.

1vs 2.5 years

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

10/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Aim today

• Hopefully most of you find it interesting in itself!
• Perhaps useful to a few people with short tight inner
looped code to speed up.

• There are few recipies … hence deep understanding is key.
• But, whatever you do, please don’t do this for all your code.
Profile and then optimise only what’s slow!

• Typically, a few hotspots account for most of your runtime.
• e.g. Genetics application:

• half dozen lines of code account for > 99% of runtime
• Chromopainter < 5, 000, 000 elements of HMM forward
equation per second.

• our problem specific optimized code ≈ 2, 000, 000, 000
elements of HMM forward equation per second on a single
laptop CPU core =⇒ 55 hours1 for full forward sweep of
Malaria data (≈ 20, 000 individuals, ≈ 1, 000, 000 loci) on
one core.

1vs 2.5 years

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

10/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Aim today

• Hopefully most of you find it interesting in itself!
• Perhaps useful to a few people with short tight inner
looped code to speed up.

• There are few recipies … hence deep understanding is key.
• But, whatever you do, please don’t do this for all your code.
Profile and then optimise only what’s slow!

• Typically, a few hotspots account for most of your runtime.

• e.g. Genetics application:
• half dozen lines of code account for > 99% of runtime
• Chromopainter < 5, 000, 000 elements of HMM forward
equation per second.

• our problem specific optimized code ≈ 2, 000, 000, 000
elements of HMM forward equation per second on a single
laptop CPU core =⇒ 55 hours1 for full forward sweep of
Malaria data (≈ 20, 000 individuals, ≈ 1, 000, 000 loci) on
one core.

1vs 2.5 years

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

10/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Aim today

• Hopefully most of you find it interesting in itself!
• Perhaps useful to a few people with short tight inner
looped code to speed up.

• There are few recipies … hence deep understanding is key.
• But, whatever you do, please don’t do this for all your code.
Profile and then optimise only what’s slow!

• Typically, a few hotspots account for most of your runtime.
• e.g. Genetics application:

• half dozen lines of code account for > 99% of runtime
• Chromopainter < 5, 000, 000 elements of HMM forward
equation per second.

• our problem specific optimized code ≈ 2, 000, 000, 000
elements of HMM forward equation per second on a single
laptop CPU core =⇒ 55 hours1 for full forward sweep of
Malaria data (≈ 20, 000 individuals, ≈ 1, 000, 000 loci) on
one core.

1vs 2.5 years

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

11/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

x86-64

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

12/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Instruction Sets and Assembly Language

A CPU has a set of fundamental operations it can perform
called the instruction set. They correspond closely (though not
injectively) to physical circuitry.

The compiler’s job is to translate code into the instruction set
of the CPU you want to run on. Assembly language is the (often
bijective) mapping of the intruction set to a human readable
form, so looking at assembler tells you exactly what the CPU
‘sees’ during execution.

For example, when I compiled a+b+a*b it became:

movsd xmm0, qword ptr [rbp-0x18]
movsd xmm1, qword ptr [rbp-0x18]
addsd xmm0, qword ptr [rbp-0x20]
mulsd xmm1, qword ptr [rbp-0x20]
addsd xmm0, xmm1
movsd qword ptr [rbp-0x10], xmm0

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

13/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Hugely simplified CPU model
• Instructions in your code are loaded into the CPU

• program counter points to first instruction, loads to
instruction register

• must then be ‘decoded’ before execution (takes time)
• e.g. load from/store to memory
• e.g. · + · → add ·, ·
• CISC -vs- RISC battle of yore

• Non-memory instructions require at least one part in
‘registers’

• xmm0 and xmm1 on previous slide were register names
• the tiny, lightning fast working memory of the CPU
• very scarce resource
• CPU spends it’s life shuffling round memory & registers

• There are caches to speed up the management of memory
operations

• cache is very expensive and limited, but importance can’t
be overstated

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

14/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

CPU nomenclature
• x86, x86-64, ARMv6, ARMv7, ARMv8 …

• instruction sets defining fundamental capabilities of CPU
• usually only compatible within architectures

• x86 ⊂ x86-64
• ARMv6 ⊂ ARMv7

• The high level instruction sets change very slowly …
• x86 (1978/1985), x86-64 (2003)
• ARMv6 (2001), ARMv7 (2004), ARMv8 (2013)

• … but many extension instruction sets glued on providing
specific high performance (often SIMD) instructions

• MMX (1996)
• SSE (1999), SSE2 (2001), SSE3 (2004), SSSE3 (2006), SSE4
(2006)

• AVX (2008), AVX2 (2013), AVX-512 (2017?)
• NEON (2004)

• less /proc/cpuinfo for flags: line showing supported
ISAs

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

15/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Super-scalar pipelined architectures

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

16/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

One might imagine …

movsd addsdmovsd mulsd addsd movsd

CPU
clock
cycles

0 1 2 3 4 5 6

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

17/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

One might imagine …

movsd addsdmovsd mulsd addsd movsd

CPU
clock
cycles

0 1 2 3 4 5 6

But in fact, there are two crucial concepts for CPU instructions:

• Throughput: maximum number of the same kind of
instruction which can be executed per clock cycle.

• Latency: how long does it take for result of instruction to
be available after it is started.

We usually think about reciprocal throughput so that it is
comparable with latency.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

18/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

For the Intel Haswell architecture (my MacBook Pro)

Instruction Port 1/Throughput Latency

movsd (mem → reg) 2/3 0.5 6
movsd (reg → mem)⋆ 2/3/7 + 4 1 5
movsd (reg → reg) 5 1 1
addsd (reg + reg) 1 1 3
addsd (reg + mem)⋆ 1 + 2/3 1 9
mulsd (reg + reg) 0/1 0.5 5
mulsd (reg + mem)⋆ 0/1 + 2/3 0.5 11
divsd (reg + reg) 0/1 14 20
divsd (reg + mem)⋆ 0/1 + 2/3 14 26

⋆ these are actually just fused micro-ops. In other words,

addsd (reg + mem) ≡ movsd (mem → reg) & addsd (reg + reg).

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

19/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

i. Super-scalar architectures

Throughput > 1 =⇒ more than 1 instruction in a clock cycle?

• Modern processors have many execution units within a
single core.

• This means (for example) the circuitry for doing
multiplication is printed twice on the same core.

• Dispatch to these execution units happens through
execution ports (a potential bottleneck).

• ∴ independent instructions can execute simultaneously on
a single core!

Instruction-level parallelism

Indeed, not just the same instruction and not just 2 …

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

19/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

i. Super-scalar architectures

Throughput > 1 =⇒ more than 1 instruction in a clock cycle?

• Modern processors have many execution units within a
single core.

• This means (for example) the circuitry for doing
multiplication is printed twice on the same core.

• Dispatch to these execution units happens through
execution ports (a potential bottleneck).

• ∴ independent instructions can execute simultaneously on
a single core!

Instruction-level parallelism

Indeed, not just the same instruction and not just 2 …

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

19/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

i. Super-scalar architectures

Throughput > 1 =⇒ more than 1 instruction in a clock cycle?

• Modern processors have many execution units within a
single core.

• This means (for example) the circuitry for doing
multiplication is printed twice on the same core.

• Dispatch to these execution units happens through
execution ports (a potential bottleneck).

• ∴ independent instructions can execute simultaneously on
a single core!

Instruction-level parallelism

Indeed, not just the same instruction and not just 2 …

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

20/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

i. Super-scalar architectures (Haswell execution ports)

192-entry Reorder Buffer

60-entry Unified Reservation Station

Port 0 Port 1 Port 2 Port 3 Port 4 Port 5 Port 6

Int ALU/
shift

FMA

FP x

VecInt x

Vec
Logic

Branch

Divide

Vec
Shift

Int ALU/
LEA

FMA

FP x, +

VecInt
ALU
Vec

Logic

Load/
Store
Addr

Store
Data

Int ALU/
LEA

Int ALU/
shift

Store
Addr

Vec
shuffle
VecInt

ALU
Vec

Logic

Port 7

Load/
Store
Addr Branch

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

21/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

ii. Pipelined

• Great, so can dispatch two multiplies, but then what?
• is execution port 0 out of action for 5 cycles?
• or just the multiply execution unit?

• Neither! Modern CPUs pipeline the circuitry so that a new
instruction can start executing on the next cycle if it is
independent of the ‘in-flight’ instructions.

movsd
port 2

addsd
port 1

movsd
port 3

mulsd
port 0

movsd
port 4+7

CPU
clock
cycles

0 61 10 12 15 20

movsd
port 2

7

movsd
port 3

addsd
port 1

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

21/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

ii. Pipelined

• Great, so can dispatch two multiplies, but then what?
• is execution port 0 out of action for 5 cycles?
• or just the multiply execution unit?

• Neither! Modern CPUs pipeline the circuitry so that a new
instruction can start executing on the next cycle if it is
independent of the ‘in-flight’ instructions.

movsd
port 2

addsd
port 1

movsd
port 3

mulsd
port 0

movsd
port 4+7

CPU
clock
cycles

0 61 10 12 15 20

movsd
port 2

7

movsd
port 3

addsd
port 1

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

22/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Woah! Time-out!

Ok, all very nice … but it sounds like the CPU is pretty
sophisticated and has this covered. Why should I care?

Quiz: can this code be speeded up?

double a, b, c, d, e, f, g, h, i;
// Values assigned
a = b * c * d * e * f * g * h * i;

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

22/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Woah! Time-out!

Ok, all very nice … but it sounds like the CPU is pretty
sophisticated and has this covered. Why should I care?

Quiz: can this code be speeded up?

double a, b, c, d, e, f, g, h, i;
// Values assigned
a = b * c * d * e * f * g * h * i;

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

23/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

… back to assembly

Well, what’s wrong with this assembly?

movsd xmm0, qword ptr [rbp-0x18]
mulsd xmm0, qword ptr [rbp-0x20]
mulsd xmm0, qword ptr [rbp-0x28]
mulsd xmm0, qword ptr [rbp-0x30]
mulsd xmm0, qword ptr [rbp-0x38]
mulsd xmm0, qword ptr [rbp-0x40]
mulsd xmm0, qword ptr [rbp-0x48]
mulsd xmm0, qword ptr [rbp-0x50]
movsd qword ptr [rbp-0x10], xmm0

Runtime: 42 CPU cycles

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

24/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

… back to C

Version 1

double a, b, c, d, e, f, g, h, i;
// Values assigned
a = b * c * d * e * f * g * h * i;

Version 2

double a, b, c, d, e, f, g, h, i;
// Values assigned
a = (b * c) * (d * e) * (f * g) * (h * i);

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

24/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

… back to C

Version 1

double a, b, c, d, e, f, g, h, i;
// Values assigned
a = b * c * d * e * f * g * h * i;

Version 2

double a, b, c, d, e, f, g, h, i;
// Values assigned
a = (b * c) * (d * e) * (f * g) * (h * i);

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

25/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

… back to assembly

movsd xmm0, qword ptr [rbp-0x18]
mulsd xmm0, qword ptr [rbp-0x20]
movsd xmm1, qword ptr [rbp-0x28]
mulsd xmm1, qword ptr [rbp-0x30]
mulsd xmm0, xmm1
movsd xmm1, qword ptr [rbp-0x38]
mulsd xmm1, qword ptr [rbp-0x40]
mulsd xmm0, xmm1
movsd xmm1, qword ptr [rbp-0x48]
mulsd xmm1, qword ptr [rbp-0x50]
mulsd xmm0, xmm1
movsd qword ptr [rbp-0x10], xmm0

Runtime: 28 CPU cycles

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

25/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

… back to assembly

movsd xmm0, qword ptr [rbp-0x18]
mulsd xmm0, qword ptr [rbp-0x20]
movsd xmm1, qword ptr [rbp-0x28]
mulsd xmm1, qword ptr [rbp-0x30]
mulsd xmm0, xmm1
movsd xmm1, qword ptr [rbp-0x38]
mulsd xmm1, qword ptr [rbp-0x40]
mulsd xmm0, xmm1
movsd xmm1, qword ptr [rbp-0x48]
mulsd xmm1, qword ptr [rbp-0x50]
mulsd xmm0, xmm1
movsd qword ptr [rbp-0x10], xmm0

Runtime: 28 CPU cycles

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

26/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

… and the winner?

Version 3

double a, b, c, d, e, f, g, h, i;
// Values assigned
a = ((b * c) * (d * e)) * ((f * g) * (h * i));

Runtime: 25 CPU cycles

In other words, Version 1 takes 92% longer to run!2 Don’t want
that in an inner loop.

Another ridiculously simple example?

array[i++] versus array[++i]

2assuming cached accesses

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

26/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

… and the winner?

Version 3

double a, b, c, d, e, f, g, h, i;
// Values assigned
a = ((b * c) * (d * e)) * ((f * g) * (h * i));

Runtime: 25 CPU cycles

In other words, Version 1 takes 92% longer to run!2 Don’t want
that in an inner loop.

Another ridiculously simple example?

array[i++] versus array[++i]

2assuming cached accesses

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

27/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

A slightly less trivial example

Careful of dependency across loop boundaries (Fog, 2014):

const int size = 100;
float list[size], sum = 0; int i;
for (i = 0; i < size; i++) sum += list[i];

Latency: 300 cycles

const int size = 100;
float list[size], sum1 = 0, sum2 = 0; int i;
for (i = 0; i < size; i += 2) {
sum1 += list[i];
sum2 += list[i+1];}

sum1 += sum2;

Latency: 154 cycles

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

27/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

A slightly less trivial example

Careful of dependency across loop boundaries (Fog, 2014):

const int size = 100;
float list[size], sum = 0; int i;
for (i = 0; i < size; i++) sum += list[i];

Latency: 300 cycles

const int size = 100;
float list[size], sum1 = 0, sum2 = 0; int i;
for (i = 0; i < size; i += 2) {
sum1 += list[i];
sum2 += list[i+1];}

sum1 += sum2;

Latency: 154 cycles

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

28/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Take home message …

… is to explicitly eliminate dependency chains as far as
possible. The compiler is very conservative, do not assume it
can figure it out!

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

29/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Dynamic & speculative execution

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

30/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Dynamic execution

• Some good news!

• Modern CPUs don’t dumbly execute machine instructions
sequentially.

• Seen importance of latency and reciprocal throughput.
• CPU will ‘park’ instructions it can’t execute yet due to
dependency and look ahead for more work it can do.

• this happens in the re-order buffer
• 168 instructions for Sandy Bridge
• 192 instructions for Haswell
• 224 instructions for SkyLake

addsd xmm0, xmm1
mulsd xmm0, xmm2
addsd xmm1, xmm2

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

30/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Dynamic execution

• Some good news!
• Modern CPUs don’t dumbly execute machine instructions
sequentially.

• Seen importance of latency and reciprocal throughput.
• CPU will ‘park’ instructions it can’t execute yet due to
dependency and look ahead for more work it can do.

• this happens in the re-order buffer
• 168 instructions for Sandy Bridge
• 192 instructions for Haswell
• 224 instructions for SkyLake

addsd xmm0, xmm1
mulsd xmm0, xmm2
addsd xmm1, xmm2

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

31/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Speculative execution

• Indeed, CPU will even do simple branch prediction and
start executing bits of code it isn’t sure about yet.

• if prediction was right, compute speed is as though branch
wasn’t there;

• if prediction was wrong …

really bad news!
• The entire pipeline of instructions needs to be flushed and
refilled.

• cost can be 20+ cycles

b = 0
if(a == 0) {

b = 1;
}
c = 3.141 * b;
if(b == 0)

++b;
c = exp(b);

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

31/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Speculative execution

• Indeed, CPU will even do simple branch prediction and
start executing bits of code it isn’t sure about yet.

• if prediction was right, compute speed is as though branch
wasn’t there;

• if prediction was wrong … really bad news!
• The entire pipeline of instructions needs to be flushed and
refilled.

• cost can be 20+ cycles

b = 0
if(a == 0) {

b = 1;
}
c = 3.141 * b;
if(b == 0)

++b;
c = exp(b);

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

32/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Speculative execution

• The CPU is ‘smart’ in that it will learn frequently revisited
if/for/while/switch statements.

• Branch Target Buffer (BTB) holds a record of previous
results used to predict future hits on the branch

• not a simple majority vote
• works right down to perfectly predicting the end of fixed
size loops

• But … branching on pseudo-random outcomes as we are
prone to do in statistics wreaks havoc, making branch
prediction pretty useless

• Assume that you’ll pay the branch penalty for branches on
random outcomes

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

33/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

An unrealistic example (don’t do this!)

It’s not the costly step, so this is unrealistic, but an example
everyone can relate to is Metropolis-Hastings. Branch
elimination here would sacrifice some additional compute:

if(pi(theta) * q(theta, thetanew) * u
< pi(thetanew) * q(theta, thetanew)) {

theta = thetanew;
}

becomes

double increment = theta - thetanew;
(int64_t) &u =

-(pi(theta) * q(theta, thetanew) *
u < pi(thetanew) * q(theta, thetanew));

(int64_t) &increment &= *(int64_t*) &u;
theta += increment;

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

34/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Take home …

… is to mathematically reformulate to eliminate unpredictable
branches within tightly run code where possible.

But, caution required for this one: it’s not an automatic win if
the new code is much more expensive.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

35/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Vector units

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

36/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

CPU SIMD vector units

All modern CPUs have the capability to perform SIMD
operations on each core. On Intel these are termed MMX, SSE
and AVX.

These are special execution units which are much wider (bit
width) and can perform the same instruction on multiple
values at once. For example, AVX2 allows you to add 8 pairs of
standard integers together in just 1 clock cycle (vaddpd ymm,
ymm, ymm). This is where a lot of the reported modern speedup
has come from since clock speeds stopped rising.

(x1, x2, . . . , x8) + (y1, y2, . . . , y8) → (x1 + y1, x2 + y2, . . . , x8 + y8)

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

37/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

The easy way

The first thing to be very careful about is expending effort
completely unnecessarily. Sometimes all it takes is a few
compiler switches and you get up to 4× speedup from vector
units … but only works in simple cases!

First thing is to make sure you are specifying the architecture
of the CPU you’re working on. See:

http://gcc.gnu.org/onlinedocs/gcc/
i386-and-x86-64-Options.html

Usually just use gcc -march=native -mtune=native ...
and to see what this detects/activates check output of gcc
-march=native -Q --help=target

Full compile & diagnose: gcc -march=native
-mtune=native -O3 -ftree-vectorizer-verbose=2

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/
http://gcc.gnu.org/onlinedocs/gcc/i386-and-x86-64-Options.html
http://gcc.gnu.org/onlinedocs/gcc/i386-and-x86-64-Options.html

38/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Diving deep — is SEE/AVX being used?

See instructions of compiled object (say test.o) using:

objdump -d -M intel -S test.o

and check area of interest for vector calls. Can run on final
executable, but hard to see what you want. Recommend
splitting code of interest into small C file.

Even better, use free Intel Architecture Code Analyzer (demo).

Note: make sure packed operations. e.g. vaddsd = AVX scalar
add, vaddpd = AVX vector add.

Or, use cool interactive compiler (C++):
http://gcc.godbolt.org

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/
http://gcc.godbolt.org

39/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Advanced reading

Recommended advanced reading:

• http://locklessinc.com/articles/vectorize/
• http://gcc.gnu.org/projects/tree-ssa/
vectorization.html

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/
http://locklessinc.com/articles/vectorize/
http://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://gcc.gnu.org/projects/tree-ssa/vectorization.html

40/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

When GCC can’t figure out what you’re doing …

If loop structure too complicated for GCC to figure out
automatically, can resort to intrinsics.

An ‘intrinsic’ is a C function which maps directly to an
assembly language construct. This enables forcing the
compiler to use the vector instruction sets (SSE/AVX).

However, means you have more housekeeping to do, roughly
corresponding to three steps where there used to be one. Not
onerous, but some people find it looks scary!

1 map your variables into vector types, correctly aligned
2 use intrinsic functions rather than usual functions or
arithmetic symbols (+, *, etc)

3 where necessary unpack results from vector units

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

41/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Intrinsics — Step 1a, memory alignment

For AVX must align to 32-byte boundary, for SSE to 16-byte
boundary.

To align regular array of, say, 100 doubles:

double a[100] __attribute__ ((aligned (32)));

This is GCC specific.

To align dynamic memory for 100 doubles, simply replace
malloc call with:

double *b = aligned_alloc(32, 100 * sizeof(double));

This is an ISO C11 standard function declared in stdlib.h.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

42/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Intrinsics — Step 1b, map variables

The compiler needs to know that you want to treat the array as
a packed vector for intrinsics. The packed variable types are:

ISA Normal type Packed type Size

SSE 4×float __m128 128-bit
SSE2 4×int __m128i 128-bit

2×double __m128d 128-bit
AVX 8×float __m256 256-bit

4×double __m256d 256-bit
AVX2 8×int __m256i 256-bit

Note: Integer vector types can also hold more char or short,
or fewer long long int

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

43/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Intrinsics — Step 1b, map variables

The easiest (but not only) way is to create a pointer of the
packed type which points to the aligned regular type array.

double a[100] __attribute__ ((aligned (32)));
__m256d *aV = (_m256d*) a;

Now aV[0] points to a vector of elements 0–3 of a and aV[1]
points to a vector of elements 4–7 of a. AVX instructions
executed on aV therefore operate on 4 elements of a at a time.

Since it’s a pointer, if aV[i] is assigned to then we can access
the results through a[i*4] to a[i*4+3].

Note: The header to include is immintrin.h for both the types
and intrinsic functions.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

44/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Intrinsics — Step 2, use intrinsic functions

All operations now take place on the packed type and we
switch to intrinsics. Thus:

for(size_t i=0; i<100; ++i)
a[i] = a[i]+b[i];

becomes

for(size_t i=0; i<100/4; ++i)
aV[i] = _mm256_add_pd(aV[i], bV[i]);

The best documentation to find the instrinsic you need is
provided by Intel:

http://software.intel.com/sites/landingpage/
IntrinsicsGuide/

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/
http://software.intel.com/sites/landingpage/IntrinsicsGuide/
http://software.intel.com/sites/landingpage/IntrinsicsGuide/

45/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Intrinsics — Step 3, unpack results

If we had instead wanted to sum the vector for example

__m256d sumV = _mm256_setzero_pd();
for(size_t i=0; i<100/4; ++i)

sumV = _mm256_add_pd(sumV, aV[i]);

Then the partial sums of a would be in the 4 elements of sum.
We could copy out to a regular aligned double and sum:

double total;
double sum[4] __attribute__ ((aligned (32)));
_mm256_store_pd(sum, sumV);
total = sum[0]+sum[1]+sum[2]+sum[3];

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

46/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Intrinsics — the upshot

It may be worth learning intrinsics if you want to be able to
have low level control to guarantee you’re getting use of vector
units.

All the indications are it’s only going to get more important:
ultimately there is a limit to what compilers can detect and
auto-vectorise, yet Intel already have a roadmap for 1024-bit
vector units.

That’s 16 double instructions per clock tick … would be almost
like the CDT machines being 16 × 48 = 768 core! GPU territory.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

47/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Cache

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

48/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

The CPU cache

• By default the CPU always loads (and stores) data through
the cache, triggering the load of a full ‘cache line’

• A cache line is the atomic unit size of memory the cache
deals with

• Loading a single byte will trigger loading the whole aligned
cache line: organise your data to take advantage!

• Cache retains this data until
• it is stale (another core updates)
• it hasn’t been accessed for a long time and more data needs
to be cached

• We essentially have no direct control of the cache
• Modern CPUs will auto-detect common patterns of access
and trigger prefetching

• sequential reads
• strided reads

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

49/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Approximate Intel Haswell memory characteristics

Memory Access Size Latency

Registers (per core) 168 physical 0 clocks

L1 cache (per core) 0.03MB ≈ 4 clocks

L2 cache (per core) 0.25MB ≈ 12 clocks

L3 cache (shared) 2 – 30MB ≈ 36 clocks

Main memory up to 32, 768 MB ≈ 212 clocks

Hard drive Terabytes can be > 106 clocks

Cache line: 64 bytes

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

50/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Considerations

We can’t explicitly control the caches, but indirectly can have
an effect:

• If you need multiple passes over memory, try to block the
passes together to fit in an appropriate cache

• Where possible, ensure temporally local accesses are also
spatially local

• e.g. operating on matrices

• For uncommon but predictable (to you) access patterns,
software prefetching may help in rare cases.

• CPU will only detect fairly obvious patterns as candidates
for hardware prefetch.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

51/51

Background x86-64 Super-scalar pipelined architectures Dynamic & speculative execution Vector units Cache

Conclusion

For that small bit of code in a tight inner loop:

• avoid long dependency chains, so that the CPU can always
be doing something useful;

• keep dependency chains well below the re-order buffer
size (192 on Haswell);

• steer clear of divison operations where possible;
• avoid branching, especially randomly, anywhere that is
possible — perhaps even if it means more compute
(profile!);

• make use of the vector capabilities of each core: except in
trivial cases, you’re going to have to be explicit;

• be careful about memory layout and access patterns to
make best use of cache.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

	Background
	x86-64
	Super-scalar pipelined architectures
	Dynamic & speculative execution
	Vector units
	Cache

