
1/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

.

.

An Introduction to Homomorphic Encryption
for Statistics and Machine Learning

Louis J. M. Aslett (aslett@stats.ox.ac.uk)

Department of Statistics, University of Oxford

Warwick Algorithms Seminar
20 November 2015

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/
mailto:aslett@stats.ox.ac.uk

2/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Outline

..1 Standard Encryption
• Discussion of encryption concepts to set the scene.

..2 Homomorphic Encryption
• Definition and high level discussion of homomorphic
schemes.

..3 Fan & Vercauteren (2012)
• In depth look at this specific homomorphic encryption
scheme.

• Some further discussion on polynomial Chinese remainder
Theorem.

..4 Software
• Discussion of implementation issues and
HomomorphicEncryption R package.

..5 Machine Learning
• Novel encrypted random forest — joint with Pedro
Esperança & Chris Holmes.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

3/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Standard Encryption

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

4/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Encryption basics (I)

Broadly speaking, an encryption scheme consists of:

• Unencrypted object, m ∈ M, referred to as a message.
• M is the message space.

• Encrypted version, c ∈ C, referred to as a cipher text.
• C is the cipher text space.

• Single (ks) ∈ Ks, or pair (ks, kp) ∈ Ks × Kp, of ‘keys’.
• Single key means secret key scheme;
• Pair of keys means public key scheme.

• Injective map, Enc : Kp × M → C.
• not necessarily a function, message can encrypt to
different cipher texts.

• Surjective function, Dec : Ks × C → M.
• Enc and Dec satisfy:

m = Dec(ks, Enc(kp,m)) ∀ m ∈ M

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

5/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Encryption basics (II)

Fundamental point is …

Enc(kp, m) � c

Easy

Hard without ks

Dec(ks, c) = m

The security level of an encryption scheme is the order of the
number of operations required to crack it (decrypt without ks).

Clearly, an upper bound on the security of an encryption
scheme is O(|Ks|), since a brute force attack which tries every
possible secret key will succeed.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

6/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Concepts: Public key -vs- private key

Presumably public key schemes are always better: can just
choose not to distribute kp?

Not really. Public key schemes tend to:

• have much larger cipher texts than messages, so are space
inefficient.

• have greater computational cost, so are compute
inefficient.

• rely on complex mathematical constructions rather than
bit-level operations, so are hard to design custom
hardware for.

Hence, private key schemes still involved in almost all
cryptography, perhaps wrapped in a public key scheme. More
anon …

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

7/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Concepts: Semantic security

.
Definition (Semantic security)
..

.

An encryption scheme is said to be semantically secure if
knowledge of the cipher text for some message has vanishingly
small probability of revealing further information about any
other encrypted message.

Informally: repeated encryption of same message renders
different and seemingly unrelated cipher texts with high
probability.

Why do we care? For private key scheme you don’t. However,
in a public key scheme where |M| is small or probable messages
are known, an attacker can perform a ‘chosen plaintext attack’
if not semantically secure — simply encrypt using the public
key and compare.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

8/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Some common schemes (history, I)

• DES or Triple-DES. Secret-key scheme with 56-bit keys.
• DES: block cipher algorithm … bit fiddling transformations
which incorporate key.

• TDEA: Enc(.,m) := Enc(ks3, Dec(ks2, Enc(ks1,m))).

• RSA. Famously the first practical public-key scheme, based
on prime number pairs.

• kp = (n, e) where:
• n = pq for p, q prime;
• e integer, 1 < e < ϕ(n), gcd(e, ϕ(n)) = 1
• Note, ϕ(n) = ϕ(p)ϕ(q)
• Enc(kp,m) := me mod n

• ks = (d) where d = e−1 mod ϕ(n)
• Dec(ks, c) := cd mod n

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

9/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Some common schemes (history, II)

PGP. Arguably first
encryption software popular
with regular users.

• Uses RSA to encrypt a
Triple-DES key

• Uses Triple-DES to
encrypt a compressed
version of message

Image by xaedes & jfreax & Acdx [CC BY-SA 3.0]

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

10/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Some common schemes (today)

• AES (Advanced Encryption Standard). Secret-key scheme
which has superceded DES and Triple-DES. Now an
industry standard.

• Use wifi with WPA2? All traffic encrypted with AES unless
you use TKIP for backwards compatability.

• Own an iPhone/iPad? The internal flash storage is
automatically encrypted using 256-bit AES.

• Most Intel CPUs since 2010 include hardware AES
acceleration.

• Required for US federal encryption since 2014.
• Brute force attacks on AES-128 require 2 billion years
running 1 trillion machines capable of testing 1 billion keys
a second.

• TLS/SSL. Every time you visit a secure website.
• RSA typically still used to verify identity and exchange
secret key.

• Triple-DES or AES used to encrypt the webpage content.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

11/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Problem: ‘Brittle’ encryption

Most cryptography schemes are ‘brittle’ in that we can’t
manipulate the message contained in the mathematical vault:
must decrypt to compute, then encrypt the result. i.e. seems
only useful for shipping round static data!

In other words, if

c1 := Enc(kp,m1)
c2 := Enc(kp,m2)

then in general, for a given function g(·, ·),�∃ f(·, ·) (not
requiring ks) such that

Dec(ks, f(c1, c2)) = g(m1,m2) ∀ m1,m2 ∈ M

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

12/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Homomorphic Encryption

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

13/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Introduction

Rivest et al. (1978) hypothesised that a limited set of functions
may be possible to compute encrypted: specifically those
involving addition and multiplication.
.
Definition (Homomorphic encryption scheme)
..

.

An encryption scheme is said to be homomorphic if there is a
set of operations ◦ ∈ FM acting in message space (such as
addition) that have corresponding operations ⋄ ∈ FC acting in
cipher text space satisfying the property:

Dec(ks, Enc(kp,m1) ⋄ Enc(kp,m2)) = m1 ◦ m2 ∀ m1,m2 ∈ M

A scheme is fully homomorphic if FM = {+, ×} and an arbitrary
number of such operations are possible.

The first fully homomorphic scheme was not found until
Gentry (2009)

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

14/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

RSA as a homomorphic scheme

Recall RSA from the introduction: it is in fact a homomorphic
encryption scheme!

FM = {×}, FC = {×}

Enc(kp,m1) × Enc(kp,m2) = (me
1 mod n) × (me

2 mod n)
= (m1m2)e mod n
= Enc(kp,m1m2)

Final equality indicates a lack of semantic security, so actually
RSA is not great when we want to encrypt plain old integer
data as it will be very vulnerable to chosen plaintext attack.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

15/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Why + and ×?

Addition and multiplication seem pretty limiting, why all the
excitement if this is all that is possible?

Note that ifM = GF(2), then:

• + ≡ ⊻, i.e. XOR, ‘exclusive or’
• × ≡ ∧, i.e. AND, ‘and’

Moreover, any electronic logic gate can be constructed using
only XOR and AND gates. Therefore, theoretically any
operation on a computer can be performed encrypted.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

16/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Limitations of homomorphic encryption

..1 Message space
• Commonly only easy to encrypt binary/integers

..2 Cipher text size
• Present schemes all inflate the size of data substantially
(e.g. 1MB → 16.4GB)

..3 Computational cost
• 1000’s additions per sec
• ≈ 50 multiplications per sec

..4 Division and comparison operations
• Impossible!

..5 Depth of operations
• After a certain depth of multiplications, need to ‘refresh’
cipher text: hugely time consuming, so avoid!

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

17/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

‘Bootstrap’ — cipher text refreshing

Unrelated to statistical term ‘bootstrap’.

See in next section, operations with cipher texts in a
semantically secure scheme increase noise component. After
some number of operations noise will overwhelm the message.

Breakthrough by Gentry (2009) was constructing decryption
algorithm simple enough to itself run encrypted.

Essentially, if you can do (v loosely speaking):

c′ = Dec(Enc(kp, ks), c)

then c′ will be a cipher text representing the same message as c,
but with noise level reset to a fresh cipher text.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

18/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012)

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

19/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) scheme : notation

• Zq = {n : n ∈ Z, −q/2 < n ≤ q/2}
• [a]q is unique integer in Zq st [a]q = a mod q
• Z[x],Zq[x] denote polynomials with coefficients in Z and
Zq respectively

• Φn(x) is nth cyclotomic polynomial
• Φ2d(x) = x2d−1 + 1

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

19/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) scheme : notation

• Zq = {n : n ∈ Z, −q/2 < n ≤ q/2}
• [a]q is unique integer in Zq st [a]q = a mod q
• Z[x],Zq[x] denote polynomials with coefficients in Z and
Zq respectively

• Φn(x) is nth cyclotomic polynomial
• Φ2d(x) = x2d−1 + 1

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

20/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Cyclotomic polynomials

.
Definition (Cyclotomic polynomial)
..

.

For any positive integer n, the nth cyclotomic polynomial is

Φn(x) := (x − ω1)(x − ω2) . . . (x − ωn)

where ω1, . . . , ωn are the primitive nth roots of unity, ωk := e
2πi
n k

Equivalently and less formally, the nth cyclotomic polynomial
is the polynomial which:

• divides xn − 1;
• does not divide xm − 1 for any m < n;
• has integer coefficients;
• and is irreducible (cannot be factorised).

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

21/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) scheme : notation (cont’d)

• Zq = {n : n ∈ Z, −q/2 < n ≤ q/2}
• [a]q is unique integer in Zq st [a]q = a mod q
• Z[x],Zq[x] denote polynomials with coefficients in Z and
Zq respectively

• Φn(x) is nth cyclotomic polynomial
• Φ2d(x) = x2d−1 + 1

• Interest in elements of polynomial ring Rq = Zq[x]/Φ2d(x)
• Polynomials written a or a(x)
• a ∼ Rq =⇒ uniform random draw from Rq
• a ∼ χ =⇒ discrete multivariate Gaussian draw in Rq

Messages m(x) ∈ M ≜ Rt

Cipher texts c ∈ C ≜ Rq × Rq

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

21/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) scheme : notation (cont’d)

• Zq = {n : n ∈ Z, −q/2 < n ≤ q/2}
• [a]q is unique integer in Zq st [a]q = a mod q
• Z[x],Zq[x] denote polynomials with coefficients in Z and
Zq respectively

• Φn(x) is nth cyclotomic polynomial
• Φ2d(x) = x2d−1 + 1
• Interest in elements of polynomial ring Rq = Zq[x]/Φ2d(x)
• Polynomials written a or a(x)

• a ∼ Rq =⇒ uniform random draw from Rq
• a ∼ χ =⇒ discrete multivariate Gaussian draw in Rq

Messages m(x) ∈ M ≜ Rt

Cipher texts c ∈ C ≜ Rq × Rq

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

21/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) scheme : notation (cont’d)

• Zq = {n : n ∈ Z, −q/2 < n ≤ q/2}
• [a]q is unique integer in Zq st [a]q = a mod q
• Z[x],Zq[x] denote polynomials with coefficients in Z and
Zq respectively

• Φn(x) is nth cyclotomic polynomial
• Φ2d(x) = x2d−1 + 1
• Interest in elements of polynomial ring Rq = Zq[x]/Φ2d(x)
• Polynomials written a or a(x)
• a ∼ Rq =⇒ uniform random draw from Rq
• a ∼ χ =⇒ discrete multivariate Gaussian draw in Rq

Messages m(x) ∈ M ≜ Rt

Cipher texts c ∈ C ≜ Rq × Rq

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

21/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) scheme : notation (cont’d)

• Zq = {n : n ∈ Z, −q/2 < n ≤ q/2}
• [a]q is unique integer in Zq st [a]q = a mod q
• Z[x],Zq[x] denote polynomials with coefficients in Z and
Zq respectively

• Φn(x) is nth cyclotomic polynomial
• Φ2d(x) = x2d−1 + 1
• Interest in elements of polynomial ring Rq = Zq[x]/Φ2d(x)
• Polynomials written a or a(x)
• a ∼ Rq =⇒ uniform random draw from Rq
• a ∼ χ =⇒ discrete multivariate Gaussian draw in Rq

Messages m(x) ∈ M ≜ Rt

Cipher texts c ∈ C ≜ Rq × Rq

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

22/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) scheme : setup

• Parameters
• d, degree of both the polynomial ringsM and C
• t and q, coefficient sets of polynomial ringsM and C
• σ, magnitude of the discrete Gaussian randomness for
semantic security

• Key generation
• Secret key:

ks ∼ R2

(i.e. sample a 2d−1 binary vector for the polynomial
coefficients).

• Public key:
kp := ([−(a · ks + e)]q, a)

where a ∼ Rq and e ∼ χ.
(ks hard to extract due to ring LWE hardness, see
Lyubashevsky et al. 2010)

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

22/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) scheme : setup

• Parameters
• d, degree of both the polynomial ringsM and C
• t and q, coefficient sets of polynomial ringsM and C
• σ, magnitude of the discrete Gaussian randomness for
semantic security

• Key generation
• Secret key:

ks ∼ R2

(i.e. sample a 2d−1 binary vector for the polynomial
coefficients).

• Public key:
kp := ([−(a · ks + e)]q, a)

where a ∼ Rq and e ∼ χ.
(ks hard to extract due to ring LWE hardness, see
Lyubashevsky et al. 2010)

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

23/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) : encryption/decryption

• Encode
Need m ∈ Z expressed as polynomial ring element. Write
in b-bit binary representation, m =

∑b−1
n=0 an2

n, then
construct m̊(x) =

∑2d−1−1
n=0 anxn ∈ Rt where an = 0 ∀ n ≥ b.

• Encryption Enc(kp,m)
First encode m ∈ Z as m̊ ∈ Rt

c := ([kp1 · u + e1 + ∆ · m̊]q, [kp2 · u + e2]q)

where u, e1, e2 ∼ χ and ∆ =
⌊q
t
⌉
.

• Decryption Dec(ks, c)

m̊ =
[⌊

t[c1 + c2 · ks]q
q

⌉]
t

so that m = m̊(2) … note, bootstrappable.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

23/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) : encryption/decryption

• Encode
Need m ∈ Z expressed as polynomial ring element. Write
in b-bit binary representation, m =

∑b−1
n=0 an2

n, then
construct m̊(x) =

∑2d−1−1
n=0 anxn ∈ Rt where an = 0 ∀ n ≥ b.

• Encryption Enc(kp,m)
First encode m ∈ Z as m̊ ∈ Rt

c := ([kp1 · u + e1 + ∆ · m̊]q, [kp2 · u + e2]q)

where u, e1, e2 ∼ χ and ∆ =
⌊q
t
⌉
.

• Decryption Dec(ks, c)

m̊ =
[⌊

t[c1 + c2 · ks]q
q

⌉]
t

so that m = m̊(2) … note, bootstrappable.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

23/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) : encryption/decryption

• Encode
Need m ∈ Z expressed as polynomial ring element. Write
in b-bit binary representation, m =

∑b−1
n=0 an2

n, then
construct m̊(x) =

∑2d−1−1
n=0 anxn ∈ Rt where an = 0 ∀ n ≥ b.

• Encryption Enc(kp,m)
First encode m ∈ Z as m̊ ∈ Rt

c := ([kp1 · u + e1 + ∆ · m̊]q, [kp2 · u + e2]q)

where u, e1, e2 ∼ χ and ∆ =
⌊q
t
⌉
.

• Decryption Dec(ks, c)

m̊ =
[⌊

t[c1 + c2 · ks]q
q

⌉]
t

so that m = m̊(2) … note, bootstrappable.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

24/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) : understanding

Dec(ks, c)

=
[⌊

t[c1 + c2 · ks]q
q

⌉]
t

=
[⌊

t[kp1 · u + e1 + ∆ · m̊ + (kp2 · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−(a · ks + e) · u + e1 + ∆ · m̊ + (a · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−e · u + e1 +
⌊q
t
⌉
m̊ + e2 · ks]q

q

⌉]
t

But, note that ∥−e · u + e1 + e2 · ks∥∞ ≪ q
t by construction, so

that after multiplication by t
q the only term surviving rounding

is m̊.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

24/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) : understanding

Dec(ks, c)

=
[⌊

t[c1 + c2 · ks]q
q

⌉]
t

=
[⌊

t[kp1 · u + e1 + ∆ · m̊ + (kp2 · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−(a · ks + e) · u + e1 + ∆ · m̊ + (a · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−e · u + e1 +
⌊q
t
⌉
m̊ + e2 · ks]q

q

⌉]
t

But, note that ∥−e · u + e1 + e2 · ks∥∞ ≪ q
t by construction, so

that after multiplication by t
q the only term surviving rounding

is m̊.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

24/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) : understanding

Dec(ks, c)

=
[⌊

t[c1 + c2 · ks]q
q

⌉]
t

=
[⌊

t[kp1 · u + e1 + ∆ · m̊ + (kp2 · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−(a · ks + e) · u + e1 + ∆ · m̊ + (a · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−e · u + e1 +
⌊q
t
⌉
m̊ + e2 · ks]q

q

⌉]
t

But, note that ∥−e · u + e1 + e2 · ks∥∞ ≪ q
t by construction, so

that after multiplication by t
q the only term surviving rounding

is m̊.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

24/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) : understanding

Dec(ks, c)

=
[⌊

t[c1 + c2 · ks]q
q

⌉]
t

=
[⌊

t[kp1 · u + e1 + ∆ · m̊ + (kp2 · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−(a · ks + e) · u + e1 + ∆ · m̊ + (a · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−e · u + e1 +
⌊q
t
⌉
m̊ + e2 · ks]q

q

⌉]
t

But, note that ∥−e · u + e1 + e2 · ks∥∞ ≪ q
t by construction, so

that after multiplication by t
q the only term surviving rounding

is m̊.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

24/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) : understanding

Dec(ks, c)

=
[⌊

t[c1 + c2 · ks]q
q

⌉]
t

=
[⌊

t[kp1 · u + e1 + ∆ · m̊ + (kp2 · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−(a · ks + e) · u + e1 + ∆ · m̊ + (a · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−e · u + e1 +
⌊q
t
⌉
m̊ + e2 · ks]q

q

⌉]
t

But, note that ∥−e · u + e1 + e2 · ks∥∞ ≪ q
t by construction, so

that after multiplication by t
q the only term surviving rounding

is m̊.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

24/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) : understanding

Dec(ks, c)

=
[⌊

t[c1 + c2 · ks]q
q

⌉]
t

=
[⌊

t[kp1 · u + e1 + ∆ · m̊ + (kp2 · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−(a · ks + e) · u + e1 + ∆ · m̊ + (a · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−e · u + e1 +
⌊q
t
⌉
m̊ + e2 · ks]q

q

⌉]
t

But, note that ∥−e · u + e1 + e2 · ks∥∞ ≪ q
t by construction, so

that after multiplication by t
q the only term surviving rounding

is m̊.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

25/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) : addition/multiplication

• Addition, + Standard vector and polynomial addition
with modulo reduction:

c1 + c2 = ([c11 + c21]q, [c12 + c22]q)
• Multiplication × Multiplication increases length of the
cipher text vector:

c1 × c2 =
([⌊

t(c11 · c21)
q

⌉]
q

,

[⌊
t(c11 · c22 + c12 · c21)

q

⌉]
q

,

[⌊
t(c12 · c22)

q

⌉]
q

)
Still possible to recover m̊ by modifying decryption to be[⌊

t
q [c1 + c2 · ks + c3 · ks · ks]q

⌉]
t
, it is preferable to perform a

‘relinearisation’ procedure which compacts the cipher text
to a vector of two polynomials again.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

26/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) : parameter choice

A reasonable default of:

d = 4096

q = 2128 = 340282366920938463463374607431768211456

t = 32768

σ = 16

gives approximately 128-bit security level and about 4
multiplications deep.

There are theoretical bounds on both multiplicative depth and
security level in the literature (Lindner & Peikert (2011), Fan &
Vercauteren (2012), Lepoint & Naehrig (2014))

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

27/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Fan & Vercauteren (2012) : limitations overview

..1 Message space
• Rt, so must encode single datum as polynomials

..2 Cipher text size
• Single 4/8-byte value ∈ Z transformed to Rq × Rq =⇒
128KB for parameters on previous slide

..3 Computational cost
• 1 message + =⇒ 8192 lots of 128-bit modular addition
• 1 message × =⇒ 4 lots of 4096 degree polynomial
multiplcations involving 128-bit values, plus 8192 lots of
128-bit addition, plus integer addition and multiplication
followed by polynomial modular reduction.

..4 Division and comparison operations
• Impossible!

..5 Depth of operations
• multiplications limited because end up with products of

−e · u, e1 and e2 terms so that ultimately noise exceeds q
t

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

28/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Ameliorating computational burden

.
Theorem (Chinese Remainder Theorem)
..

.

Let m1, . . . ,mk ∈ Z+ be pairwise coprime positive integers. Let
M =

∏k
i=1mi and let a, x1, . . . , xk ∈ Z. Then there is exactly one

integer x that satisfies the conditions:

a ≤ x < a + m and x ≡ xi mod mi ∀ 1 ≤ i ≤ k

Thus, an integer message x ∈ [a, a + m) can be uniquely
represented by the collection of smaller integers {xi}ki=1 … this
is a Residue Number System. Conversely, can also think of
{xi}ki=1 being represented by x.

Going x → {xi}ki=1 is simply taking modulo each mi.

Going {xi}ki=1 → x can be constructed via the extended
Euclidean algorithm.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

29/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Arithmetic with CRT

In particular, note that a Chinese Remainder Theorem
representation preserves modular arithmetic.

Let {xi}ki=1, {yi}ki=1 be two collections of residue numbers,
modulo {mi}ki=1. Let x and y be the corresponding integers
satisfying the Chinese Remainder Theorem. Then,

z = x + y ⇐⇒ z mod mi = zi = (xi + yi) mod mi

In other words, doing one addition (x + y) actually gives k
additions by looking at the single result modulo each mi.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

30/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Polynomial Chinese Remainder Theorem (I)

There is a corresponding CRT for polynomials.

Although Φn(x) is irreducible over Q[x], it is not necessarily
irreducible over Zt[x]. Suppose it has r factors:

Φn(x) =
r∏

j=1

fj(x)

Then, we can encode a vector of polynomial messages
(m̊1, . . . , m̊r) since by the Polynomial Chinese Remainder
Theorem ∃ m̊ ∈ Zt[x]/Φn(x) such that m mod fi(x) = m̊i.

Upshot: if we now encrypt m, then we have encrypted a CRT
representation of rmessages in just one cipher text.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

31/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Polynomial Chinese Remainder Theorem (II)

So, consider a collection of vectors of polynomials encoded in
this way

Zt[x]/f1(x) × · · · × Zt[x]/fr(x) ∋ (m̊i1, . . . , m̊ir) −→ m̊i ∈ Rt

Then,

(∑
i

m̊i

)
mod fj(x) =

(∑
i

m̊ij

)
mod fj(x) ∀j = 1, . . . , r(∏

i

m̊i

)
mod fj(x) =

(∏
i

m̊ij

)
mod fj(x) ∀j = 1, . . . , r

In other words, we can do SIMD on cipher texts. There also
exist automorphism mappings which will allow slots to be
exchanged and interacted. (Smart & Vercauteren 2014)

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

32/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Software

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

33/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Existing implementations

• libfhe (Minar 2010) compact single C file library
implementing Gentry (2010)

• ‘Scarab’ (Perl et al. 2011) low level C library implementing
Smart & Vercauteren (2010)

• ‘HELib’ (Halevi & Shoup 2014) most impressive library, in
C++ implementing Brakerski et al. (2012) and lots beyond
the bare bones cryptography (i.e. Polynomial Chinese
Remainder Theorem + automorphisms)

• more besides …

However, these all tend to be very low-level libraries.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

34/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

HomomorphicEncryption R package (Aslett 2014)

All core code in high-performance multi-threaded C++, but
accessible via simple R functions and overloaded operators:

library(”HomomorphicEncryption”)

p <- pars(”FandV”)
k <- keygen(p)
c1 <- enc(k$pk, c(42,34))
c2 <- enc(k$pk, c(7,5))
cres1 <- c1 + c2
cres2 <- c1 * c2
cres3 <- c1 %*% c2
dec(k$sk, cres1)
dec(k$sk, cres2)
dec(k$sk, cres3)

Demo

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

35/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

ML

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

36/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Random Forests

Want to build a random forest on some encrypted data. But,

• No comparisons possible to evaluate splits
• No max possible to find highest class vote
• No division possible to do average votes
• …

So random forests (and other methods) need to be tailored for
encrypted computation. This is where statistics and machine
learning community can get involved!

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

37/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Data representation

First, need to arrange data to at least enable decision trees to
be evaluated.

..1 Assume xij ∈ R (or categorical) and make partition of
support of variable j, Kj = {Kj

1, . . . ,Kj
m}.

xij ∈
m∪

k=1

Kj
k ∀ i, j and Kj

i ∩ Kj
k = ∅ ∀ j, ∀ i ̸= k

..2 Encode xij as indicator x̃ijk ∈ {0, 1} ∀ k, where
x̃ijk = 1 ⇐⇒ xij ∈ Kj

k and x̃ijl = 0 ∀ l ̸= k.

X =

0 1 1.7
1 2 1.9
0 3 1.6
...

...
...

xi1 xi2 xi3

 → X̃ =

0 1 0 0 0 0 1 0 0
1 0 1 0 0 0 0 0 1
0 0 0 1 1 0 0 0 0
...

...
...

x̃i11 x̃i21 x̃i22 x̃i23 x̃i31 x̃i32 x̃i33 x̃i34 x̃i35

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

38/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Pseudo-comparisons

This data representation means:∑
∀ k

x̃i1jkx̃i2jk = 1 ⇐⇒ obs i1 and i2 equal quantised value on var j

and ∑
k∈K

x̃ijk = 1 ⇐⇒ obs i has quantised value in set K

which provide sufficient ‘psuedo-comparisons’ to construct a
completely random forest.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

39/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Completely Random Forests (I)

..1 Select variable, j, to perform split on completely at
random.

..2 Select the split point completely at random. That is,
choose level l decision splits Dl

1 and Dl
2 such that

Dl
1 ∪ Dl

2 = Kj and Dl
1 ∩ Dl

2 = ∅.
..3 Repeat to a prespecified tree depth.

Tree

D1
1 = {K3

1 , K3
2} D1

2 = {K3
3 , K3

4 , K3
5}

D2
1 = {K1

1} D2
2 = {K1

2 , K1
3 , K1

4} D3
1 = {K2

1 , K2
2 , K2

3} D3
2 = {K2

4}

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

40/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Completely Random Forests (II)

Encrypt under kp indicators of the splits:

Tree

D1
1 = {K3

1 , K3
2} D1

2 = {K3
3 , K3

4 , K3
5}

D2
1 = {K1

1} D2
2 = {K1

2 , K1
3 , K1

4} D3
1 = {K2

1 , K2
2 , K2

3} D3
2 = {K2

4}

d1
1 = (1, 1, 0, 0, 0) d1

2 = (0, 0, 1, 1, 1)

d2
1 = (1, 0, 0, 0) d2

2 = (0, 1, 1, 1) d3
1 = (1, 1, 1, 0) d3

2 = (0, 0, 0, 1)

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

41/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Completely Random Forests (II)

For each observation, evaluate every branch of the decision
tree:

Tree

D1
1 = {K3

1 , K3
2} D1

2 = {K3
3 , K3

4 , K3
5}

D2
1 = {K1

1} D2
2 = {K1

2 , K1
3 , K1

4} D3
1 = {K2

1 , K2
2 , K2

3} D3
2 = {K2

4}

d1
1 = (1, 1, 0, 0, 0) d1

2 = (0, 0, 1, 1, 1)

d2
1 = (1, 0, 0, 0) d2

2 = (0, 1, 1, 1) d3
1 = (1, 1, 1, 0) d3

2 = (0, 0, 0, 1)

��
x̃i3·d

1
1

� ��
x̃i1·d

2
1

� ��
x̃i3·d

1
1

� ��
x̃i1·d

2
2

� ��
x̃i3·d

1
2

� ��
x̃i2·d

3
1

� ��
x̃i3·d

1
2

� ��
x̃i2·d

3
2

�

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

42/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Completely Random Forests (III)

Response class also expanded in a binary fashion,
yi → ỹic ∈ {0, 1} for c ∈ {1, . . . , |C|}.

Then observation is a ‘vote’ for class c from each terminal leaf
if it survives:

Tree

D1
1 = {K3

1 , K3
2} D1

2 = {K3
3 , K3

4 , K3
5}

D2
1 = {K1

1} D2
2 = {K1

2 , K1
3 , K1

4} D3
1 = {K2

1 , K2
2 , K2

3} D3
2 = {K2

4}

d1
1 = (1, 1, 0, 0, 0) d1

2 = (0, 0, 1, 1, 1)

d2
1 = (1, 0, 0, 0) d2

2 = (0, 1, 1, 1) d3
1 = (1, 1, 1, 0) d3

2 = (0, 0, 0, 1)

��
x̃i3·d

1
1

� ��
x̃i1·d

2
1

� ��
x̃i3·d

1
1

� ��
x̃i1·d

2
2

� ��
x̃i3·d

1
2

� ��
x̃i2·d

3
1

� ��
x̃i3·d

1
2

� ��
x̃i2·d

3
2

�

�yic �yic �yic �yic

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

43/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Completely Random Forests (IV)

Summing each terminal leaf over all observations renders total
number of ‘votes’ for each class from the whole data set.

Thus:

• a tree is represented by:
• the split partitions D;
• the total votes in each terminal leaf for each class.

• prediction involves:
• evaluating a new observation through all branches;
• taking product with corresponding vote totals for each
class;

• summing across trees and across leaves to get total votes
for each class.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

44/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Biggest problem

Every tree contributes according to raw votes, not how well
separation occurs.

Thus, confused leaves with many votes can overwhealm certain
ones with few.

To overcome this Random Forests usually use:

..1 single vote per tree (requires comparison to find max)

..2 relative class frequencies (requires division)

… develop novel method to achieve an unbiased
approximation to 2.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

45/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Relative class frequencies

Hereinafter, consider just one leaf (drop spurious notation).

Let νc be the number of votes for class c in the leaf. The relative
class frequency contribution should be:

νc∑
c νc

But, this belongs to [0, 1] which we can’t represent and involves
division. Target equivalently:

νc

⌊
N∑
c νc

⌉
where N is the number of training observations.

• By construction
∑

c νc ≤ N, so 0 ≤
∑

c νc
N ≤ 1

• Recall, X ∼ Geometric(p) =⇒ E[X] = p−1

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

46/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Stochastic fraction estimate (I)

Thus, unbiased approximation to fraction is draw from
Geometric distribution with probability

∑
c νc
N .

Better than division?

Crucial observation: each νc arises from summing a binary
vector {0, 1}N.

Define νc :=
∑N

i=1 ηci (so ηci is 1 if training obs. i was of class c
and fell in this leaf of the decision tree).

=⇒ blind random sampling from {
∑

c ηci : i = 1, . . . ,N} will

produce 1 with probability exactly
∑

c νc
N .

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

46/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Stochastic fraction estimate (I)

Thus, unbiased approximation to fraction is draw from
Geometric distribution with probability

∑
c νc
N .

Better than division?

Crucial observation: each νc arises from summing a binary
vector {0, 1}N.

Define νc :=
∑N

i=1 ηci (so ηci is 1 if training obs. i was of class c
and fell in this leaf of the decision tree).

=⇒ blind random sampling from {
∑

c ηci : i = 1, . . . ,N} will

produce 1 with probability exactly
∑

c νc
N .

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

47/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Stochastic fraction estimate (II)

Problem: count number of leading zeros in an encrypted
Bernoulli process.

Inspiration from CPU hardware algorithm:

Let ξ1, . . . , ξM be a resampled vector (ξi =
∑

c ηcj, some j) and
assumeM is a power of 2.

..1 For l ∈ {0, . . . , log2(M) − 1}:
• Set ξi = ξi ∨ ξi−2l = ξi + ξi−2l − ξiξi−2l ∀ 2l + 1 ≤ i ≤ M

..2 The number of leading zeros isM −
∑M

i=1 ξi

Corresponds to increasing power of 2 bit-shifts OR’d with itself,
all computable encrypted.

=⇒
⌊

N∑
c νc

⌉
≈ M −

M∑
i=1

ξi + 1

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

47/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Stochastic fraction estimate (II)

Problem: count number of leading zeros in an encrypted
Bernoulli process.

Inspiration from CPU hardware algorithm:

Let ξ1, . . . , ξM be a resampled vector (ξi =
∑

c ηcj, some j) and
assumeM is a power of 2.

..1 For l ∈ {0, . . . , log2(M) − 1}:
• Set ξi = ξi ∨ ξi−2l = ξi + ξi−2l − ξiξi−2l ∀ 2l + 1 ≤ i ≤ M

..2 The number of leading zeros isM −
∑M

i=1 ξi

Corresponds to increasing power of 2 bit-shifts OR’d with itself,
all computable encrypted.

=⇒
⌊

N∑
c νc

⌉
≈ M −

M∑
i=1

ξi + 1

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

48/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Results (I)

●0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
U

C

in
fl

ne
ph

ad
ul

t

ba
nk

bl
oo

d

bc
w

_d

bc
w

_o

bc
w

_p

ch
es

s

ha
be

r

●

●

●

●

●

●

●

LR−full
GNB
MNB*
SNB−unpaired*
SNB−paired*
CRF*
RF
freq class '1'

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

49/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Results (II)

●0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
U

C

he
ar

t

io
no

m
ag

ic

m
am

m
o

m
on

ks
3

m
us

k1

m
us

k2

oz
on

e1

oz
on

e8

sp
am

●

●

●

●

●

●

●

LR−full
GNB
MNB*
SNB−unpaired*
SNB−paired*
CRF*
RF
freq class '1'

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

50/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Stochastic fraction effect (best)

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
● ●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

● ●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●

●
●

●

●

●

●●
●

● ●

●
●

●●

●
●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●
●

●

●

●●

●

●
●

●

●

M = 2 M = 4 M = 8

M = 16 M = 32 M = 64

0.80

0.85

0.90

0.95

1.00

0.80

0.85

0.90

0.95

1.00

0.80 0.85 0.90 0.95 1.000.80 0.85 0.90 0.95 1.000.80 0.85 0.90 0.95 1.00
M = 0

A
U

C

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

51/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

Stochastic fraction effect (worst)

●
●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

● ●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

M = 2 M = 4 M = 8

M = 16 M = 32 M = 64

0.4

0.5

0.6

0.7

0.8

0.4

0.5

0.6

0.7

0.8

0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8 0.4 0.5 0.6 0.7 0.8
M = 0

A
U

C

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

52/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

References I

Aslett, L. J. M. (2014). HomomorphicEncryption: Fully homomorphic
encryption. http://www.louisaslett.com/HomomorphicEncryption/.

Aslett, L. J. M., Esperança, P. M., & Holmes, C. C. (2015a). A review of
homomorphic encryption and software tools for encrypted statistical machine
learning. University of Oxford.

Aslett, L. J. M., Esperança, P. M., & Holmes, C. C. (2015b). Encrypted
statistical machine learning: New privacy preserving methods.
arXiv:1508.06845 [stat.ML].

Brakerski, Z., Gentry, C., & Vaikuntanathan, V. (2012). (Leveled) fully
homomorphic encryption without bootstrapping. Proceedings of the 3rd
innovations in theoretical computer science conference, pp. 309–25. ACM.

Fan, J., & Vercauteren, F. (2012). Somewhat practical fully homomorphic
encryption. IACR Cryptology ePrint Archive.

Gentry, C. (2009). A fully homomorphic encryption scheme (PhD thesis).
Stanford University. Retrieved from <crypto.stanford.edu/craig>

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/
http://www.louisaslett.com/HomomorphicEncryption/
crypto.stanford.edu/craig

53/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

References II
Gentry, C. (2010). Computing arbitrary functions of encrypted data.
Communications of the ACM, 53/3: 97–105. ACM.

Halevi, S., & Shoup, V. (2014). HElib. https://github.com/shaih/HElib.

Lepoint, T., & Naehrig, M. (2014). A comparison of the homomorphic
encryption schemes FV and YASHE. Progress in cryptology–AFRICACRYPT
2014, pp. 318–35. Springer.

Lindner, R., & Peikert, C. (2011). Better key sizes (and attacks) for LWE-based
encryption. Topics in cryptology–CT-rSA 2011, pp. 319–39. Springer.

Lyubashevsky, V., Peikert, C., & Regev, O. (2010). On ideal lattices and
learning with errors over rings. Proceedings of the 29th annual international
conference on theory and applications of cryptographic techniques.
Springer-Verlag.

Minar, J. (2010). Libfhe.
https://github.com/rdancer/fhe/tree/master/libfhe.

Perl, H., Brenner, M., & Smith, M. (2011). Scarab library.
https://hcrypt.com/scarab-library/.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/
https://github.com/shaih/HElib
https://github.com/rdancer/fhe/tree/master/libfhe
https://hcrypt.com/scarab-library/

54/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software ML

References III

Rivest, R. L., Adleman, L., & Dertouzos, M. L. (1978). On data banks and
privacy homomorphisms. Foundations of Secure Computation, 4/11: 169–80.

Smart, N. P., & Vercauteren, F. (2010). Fully homomorphic encryption with
relatively small key and ciphertext sizes. Public key cryptography–PKC 2010,
pp. 420–43. Springer.

Smart, N. P., & Vercauteren, F. (2014). Fully homomorphic SIMD operations.
Designs, codes and cryptography, 71/1: 57–81.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

	Standard Encryption
	Homomorphic Encryption
	Fan & Vercauteren (2012)
	Software
	ML

