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Introduction Homomorphic Encryption Encrypted Statistical Machine Learning R package

Motivation

Security in big data applications is a growing concern:

• computing in a ‘hostile’ environment (e.g. cloud
computing);

• donation of sensitive/personal data (e.g. medical/genetic
studies);

• complex models on constrained devices (e.g. smart
watches)

• running confidential algorithms on confidential data
(e.g. engineering reliability)
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Limitations of homomorphic encryption

..1 Message space (what we can encrypt)
• Commonly only easy to encrypt
binary/integers/polynomials

..2 Cipher text size (the result of encryption)
• Present schemes all inflate the size of data substantially
(e.g. 1MB → 16.4GB)

..3 Computational cost (computing without decrypting)
• 1000’s additions per sec
• ≈ 50 multiplications per sec

..4 Division and comparison operations (equality/inequality
checks)

• Not possible in current schemes!

..5 Depth of operations
• After a certain depth of multiplications, need to ‘refresh’
cipher text: hugely time consuming, so avoid!
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Statistics & Machine Learning Encrypted?

Lots of constraints! Are traditional statistics and machine
learning techniques out of reach to run on encrypted data?
We’ve looked at a semi-parametric naïve Bayes and a variant of
random forests.

So, want to build a random forest on encrypted data … but,

• No comparisons possible to evaluate splits
• No max possible to find highest class vote
• No division possible to do average votes
• …

Thus random forests (and other methods) need to be tailored
for encrypted computation. This is where statistics and
machine learning community can get involved!
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Completely Random Forests (CRFs) — Data encoding

..1

xij � R 0 0 0 01
B quantiles

..2 Then,

I(xij ≤ bl) =
l∑

k=1

xijk and I(xij > bl) =
B∑

k=l+1

xijk

..3 Similarly encode response category c, yi → yic ∈ {0, 1}.

..4 Build a decision tree selecting variable j and split point bl
completely at random to a fixed depth.
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Completely Random Forests (CRFs) — Tree ‘fitting’, I

Exactly one terminal leaf indicator evaluates to 1, encrypted.
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Completely Random Forests (CRFs) — Tree ‘fitting’, II

xij2
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Completely Random Forests (CRFs) — Tree ‘fitting’, II

xij2
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NB Must evaluate all branches and categories as blindfold.
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Completely Random Forests (CRFs) — Prediction

Prediction involves:

• evaluating a new observation through all branches;
• taking product with corresponding vote totals for each
class;

• summing across trees and across leaves to get total votes
for each class.

But, confused leaves with many votes can overwhealm certain
ones with few. Random Forests usually use:

..1 single vote per tree (requires comparison to find max)

..2 relative class frequencies (requires division)

… developed novel ‘stochastic fraction estimate’, an unbiased
approximation to 2.



9/12

Introduction Homomorphic Encryption Encrypted Statistical Machine Learning R package

Completely Random Forests (CRFs) — Prediction

Prediction involves:

• evaluating a new observation through all branches;
• taking product with corresponding vote totals for each
class;

• summing across trees and across leaves to get total votes
for each class.

But, confused leaves with many votes can overwhealm certain
ones with few. Random Forests usually use:

..1 single vote per tree (requires comparison to find max)

..2 relative class frequencies (requires division)

… developed novel ‘stochastic fraction estimate’, an unbiased
approximation to 2.



10/12

Introduction Homomorphic Encryption Encrypted Statistical Machine Learning R package

Results
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HomomorphicEncryption R package

library(”HomomorphicEncryption”)
p <- parsHelp(”FandV”, lambda=128, L=5)
k <- keygen(p)
c1 <- enc(k$pk, 2); c2 <- enc(k$pk, 3)
cres <- c1 + c2 * c1
dec(k$sk, cres)

[1] 8

cmat <- enc(k$pk, matrix(1:9, nrow=3))
cmat2 <- cmat %*% cmat
dec(k$sk, cmat2)

[,1] [,2] [,3]
[1,] 30 66 102
[2,] 36 81 126
[3,] 42 96 150
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