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Introduction

Motivation

Security in statistics applications is a growing concern:

computing in a ‘hostile’ environment (e.g. cloud
computing);

donation of sensitive/personal data (e.g. medical/genetic
studies);

complex models on constrained devices (e.g. smart
watches)

running confidential algorithms on confidential data
(e.g. engineering reliability)

big(ger) data (e.g. pooling data sources)
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« Differential privacy
+ on outcomes of ‘statistical queries’
« guarantees of privacy for individual observations

4/26



Introduction

Perspectives on “privacy”

« Differential privacy
+ on outcomes of ‘statistical queries’
« guarantees of privacy for individual observations

 Data privacy
- atrest
e during fitting
e data pooling

4/26



Introduction

Perspectives on “privacy”

« Differential privacy
+ on outcomes of ‘statistical queries’
« guarantees of privacy for individual observations

 Data privacy
- atrest
e during fitting
e data pooling

e Model privacy
e prior distributions
¢ model formulation

4/26



Introduction

Perspectives on “privacy”

« Differential privacy
+ on outcomes of ‘statistical queries’
« guarantees of privacy for individual observations

 Data privacy
- atrest
e during fitting
e data pooling

e Model privacy
e prior distributions
¢ model formulation
+ see other work ‘Towards Encrypted Inference for Arbitrary
Models’
¢ video of talk available at newton.ac.uk
¢ now in collaboration with Sam Livingstone, UCL
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Introduction

The perspective for today ...

« Eve, Cain and Abel have private data of the same type.

e There is a Bayesian model of mutual interest.

« Inference would be improved by pooling the data, but
privacy constraints (eg GDPR) prevent this.
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The perspective for today ...

« Eve, Cain and Abel have private data of the same type.

e There is a Bayesian model of mutual interest.

« Inference would be improved by pooling the data, but
privacy constraints (eg GDPR) prevent this.

Can Eve, Cain and Abel pool their data in order to fit a Bayesian
model without revealing the raw data?

Agreed model Private data

( ‘w) l X; = 7"'71'Ld nsz
{ (2 (wl )} :

N
{xi = (1, .. -, xid)}i:"ﬁ"?“
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Introduction
Differential Privacy

Differential privacy quantifies the privacy level of ‘statistical
queries’. Need for the mutually fitted model.

Informally, for today this is: “how much can be learned about
the original data when we learn about the Bayes posterior from
MCMC samples?”

6/26



Introduction

Differential Privacy

Differential privacy quantifies the privacy level of ‘statistical
queries’. Need for the mutually fitted model.

Informally, for today this is: “how much can be learned about
the original data when we learn about the Bayes posterior from
MCMC samples?”

Strong statement: we assume an adversary has access to
arbitrary auxilliary information ... data being ‘big’ not a
protection.

Definition (Differential Privacy)

We say that a randomised algorithm M is (e, )-differentially
private if for all § C Range (M) and for all z, y such that
|z =yl <1

P(M(x) € 8) <exp(e)P(M(y) € S)+9d
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Previous work

Everyone sees fitted model parameters, differential privacy of
output important. Previous perspectives applied at the
combination step.

7/26



Introduction
Previous work

Everyone sees fitted model parameters, differential privacy of
output important. Previous perspectives applied at the
combination step.

Close prior work, “On the Use of Penalty MCMC for Differential
Privacy”, S. Yildirim, 2016.

« Parties exchange noisy log-likelihood contributions
(differentially private).

 Post process these with accept/reject step.

* View as penalty MCMC algorithm.

« Final posterior samples shown to be differentially private.
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Introduction
Previous work

Everyone sees fitted model parameters, differential privacy of
output important. Previous perspectives applied at the
combination step.

Close prior work, “On the Use of Penalty MCMC for Differential
Privacy”, S. Yildirim, 2016.

« Parties exchange noisy log-likelihood contributions
(differentially private).

 Post process these with accept/reject step.

* View as penalty MCMC algorithm.

« Final posterior samples shown to be differentially private.

Today: Can we produce a method with better efficiency
properties than penalty MCMC by leveraging cryptographic

methods?
7/26
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Cryptography the solution?

Encryption can provide security guarantees ...

Easy
Enc(k,,m) = c Dec(kg,c) =m

Hard without &,

... but is typically ‘brittle’.
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Introduction
Cryptography the solution?

Encryption can provide security guarantees ...

Easy
Enc(k,,m) = c Dec(kg,c) =m

Hard without &,

... but is typically ‘brittle’.

Arbitrary addition and multiplication is possible with fully
homomorphic encryption schemes (Gentry, 2009).

+
my mo > my 4+ mo

l Enc(kp, -)l TDec(ks, )
D

C1 Co — 1P
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Introduction
Back to the problem ...

Agreed model Private data
(- [¥)
m(¥)

N
{Xi = (xila R xid)}i:n1+n2+1
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Introduction
Back to the problem ...

Agreed model Private data
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m(¥)
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Introduction
Back to the problem ...

Agreed model Private data
(- [¥)
m(¥)

X Likelihood restricted to low A {xi = (za1,..., Tig
degree polynomials = 20— —— — ———————————-

X Can only handle very small N {xi = (i1, .., xid)}i\inl—kng—kl
due to multiplicative depth

X MAP/posterior? How?

MCMC? l

X Who holds secret key?

(] X) x; = Enc(kp, x;)

N
Dec ks,Hw(xﬂEnc(kp,w»Enc(kp,ww))] —

=1 9/26



Introduction

Homomorphic Secret Sharing (HSS)

We require the properties of homomorphic encryption, but for
multiple users.

 Yao’s garbled circuit protocol

 Boolean circuit construction
¢ Modern multiparty computation (eg SPDZ)

e Computationally very intensive

« Communication for multiplication operations
¢ Homomorphic secret sharing

 Fast computation

 Information theoretic security is possible
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Introduction

(Very Simplified) Homomorphic Secret Sharing
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(Very Simplified) Homomorphic Secret Sharing
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Introduction
Security of Homomorphic Secret Sharing

How secure is this secret sharing compared to, say,
homomorphic encryption, RSA, AES, ...?
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Introduction
Security of Homomorphic Secret Sharing

How secure is this secret sharing compared to, say,
homomorphic encryption, RSA, AES, ...?

Assuming parties do not collude:
Information Theoretically Secure

This means that an adversary with unbounded compute power
cannot determine your secret data.
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Introduction

Advanced Homomorphic Secret Sharing

Real HSS methods are more advanced, based on polynomials
over a finite field, where:

« Upto % of parties may be corrupted.

+ Combining cryptographic and secret sharing to manage
dishonest majority scenarios (but losing information
theoretic security).

 Security against active attackers.

 Both perfectly and imperfectly secure communication
channels.
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Confidential MCMC

Metropolis-Hastings

To sample from a target (unnormalised) density of interest,

7(0).
@ Initialise with a sample 6.
@ Given a sample 0, propose a new sample 0" ~ ¢(-|0,).

® Compute (f,,0") = min{1,7(0,,0")} where

7T<0/)Q(9i |9/>

000 = 6a0 19,

(D

@ With probability a(6,,0") set§,.; = 0’, else set
Oiv1 =0,
@ Repeat steps 2—4 for a fixed number of iterations.
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Confidential MCMC
Bayesian inference

Often assume independence so that

N
w(0) = (01) o) [[ l0: 19

In privacy setting, consider partition of observation indices,

{732, st
Uji:{l,...,N}andjiﬂjj:@ Vi+£j

where participant j only has access to {y; } ;s . Then write
J
Bayesian posterior:

(0 |y) < p(6 H 11 p(v:16)

j=1li€Jd;
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Confidential MCMC

Log-likelihood shares

Define portion of likelihood computable by participant j,

py(0) == [ p(y:10)

=
Then,
log w(0) = logp(f) + Zlogp}(Q)
j=1
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Confidential MCMC

Log-likelihood shares

Define portion of likelihood computable by participant j,

= H p(y;10)

i€d;
Then,
m
log w(0) = logp(f) + Zlogp}(Q)
and acceptance ratio becomes,
logr(6;,0") = logp(6’) —logp(6;)
+Z log p5(0") —log p’(6;))

+ logq(ei 10”) —logq(0"16;)
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Confidential MCMC

All done?

So, are we finished? Simply compute the acceptance ratio using
homomorphic secret shares?
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Confidential MCMC

All done?

So, are we finished? Simply compute the acceptance ratio using
homomorphic secret shares?

Not so fast ... completely deterministic so no differential
privacy guarantee can be provided when parties observe value
of acceptance ratio!

18/26



Confidential MCMC

Achieving differential privacy

Rewrite Metropolis-Hastings in an exactly equivalent way:
@ Initialise with a sample 0.

@ Given a sample 0, propose a new sample " ~ ¢(-|6,).
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Achieving differential privacy

Rewrite Metropolis-Hastings in an exactly equivalent way:
@ Initialise with a sample 0.
@ Given a sample 0, propose a new sample " ~ ¢(-|6,).
@® Sample U ~ Unif(0, 1) and compute
n =logr(6,;,0") —logU

O Set
0 0, ifn<0
19 ifnp>0

® Repeat steps 2—4 for a fixed number of iterations.
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Confidential MCMC

Achieving differential privacy

Rewrite Metropolis-Hastings in an exactly equivalent way:
@ Initialise with a sample 0.
@ Given a sample 0, propose a new sample " ~ ¢(-|6,).

@® Sample U ~ Unif(0, 1) and compute
n =logr(6,;,0") —logU

O Set
0 0, ifn<0
1T 0 ifn>0
® Repeat steps 2—4 for a fixed number of iterations.

If we can compute 7) and establish 7 % 0, then the HSS step is a
randomised algorithm.
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Confidential MCMC

Requirements

Main objective: hide the acceptance ratio log (6,, 0).
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Confidential MCMC
Requirements

Main objective: hide the acceptance ratio log (6,, 0).

But, this requires also hiding uniform random sample
U ~ Unif(0, 1). If a participant observes U, they can:
« learnlogr(6,,0") if they observe 7.
« learn a bound on log (6, 6”) if they observe n = 0.
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Confidential MCMC
Requirements

Main objective: hide the acceptance ratio log (6,, 0).
But, this requires also hiding uniform random sample
U ~ Unif(0, 1). If a participant observes U, they can:

« learnlogr(6,,0") if they observe 7.

« learn a bound on log (6, 6”) if they observe n = 0.
Note:

U ~ Unif(0,1) = —logU ~ Exp(1)
From Devroye (1986),
T,V,W ~ Unif(0,1) = W(—1logTV) ~ Exp(1)

- collaboratively compute with two participants, one secret

shares W, the other —logT'V.

20/26



Confidential MCMC algorithm

@ Initialise with a sample 0.

@ Given a sample 0, propose a new sample " ~ ¢(-|6,).
@ Participant 1 samples U, V' ~ Unif(0, 1)

@ Participant 2 samples W ~ Unif(0, 1)

@® Compute ) :=logr(h,;,0") + Wlog UV via
homomorphic secret shares

O Set
0. 0, ifn<0
1T 0 ifn>0

@ Repeat steps 2-5 for a fixed number of iterations.
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Confidential MCMC

Level of Differential Privacy

Can entirely hide the value of 1) by taking product with random
positive value, so can assume we just observe accept/reject
decision.
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Confidential MCMC

Level of Differential Privacy

Can entirely hide the value of 1) by taking product with random
positive value, so can assume we just observe accept/reject
decision.

In one iteration, we achieve same level of differential privacy as
when observing a single iid draw from posterior:

Lemma (single iteration DP)

A single iteration of the confidential MCMC algorithm has
differential privacy,

P(H<0Y) _ 0
Py <0ly—)

where C' = sup, , ,|logm(y[0) —logm(y"[0)|.
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Confidential MCMC

Level of Differential Privacy

Under repeated sampling to form a full MCMC output,
differential privacy can still be achieved:

Theorem (MCMC trace DP)

Let d, be the dimension of parameter 6 and let

dlog(y|0)
AN

y,0

Then, by advanced composition of £ iterations, differential
privacy attains

(c = & (v/2RTog(1/8) + k (¢ — 1)) ,6)

where & = 4dyn~Y/2M
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Confidential MCMC

Improving?

Fixing some parameters and bounding for a very rough
fit-on-the-slide comparison ...

The two primary terms in ¢ for a fixed k iterations leads private
penalty method being larger by a multiplicative factor,

N \/25" logn and N B’ logn

20 T 202

where /3’ is a selectable parameter > 1.
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Confidential MCMC

Improving?

Fixing some parameters and bounding for a very rough
fit-on-the-slide comparison ...

The two primary terms in ¢ for a fixed k iterations leads private
penalty method being larger by a multiplicative factor,

\/25" logn B’ logn
N and N ——
20 202
where /3’ is a selectable parameter > 1.

Crucially,

« this new method allows arbitrarily small user chosen J.
« the penalty method has poorer performance in Peskun
sense (Nicholls et al, 2012);
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Conclusion

Work in progress ...

@ Fuller characterisation of improvement provided vs not
using cryptographic methods

® Implementation is in development with
« Shamir’s secret sharing extended to including
multiplication
o fully secure network communication built in
 automatic parsing and evaluation of a provided function
circuits

©® Performance of the technique:
* minimising circuit size?
 optimal ordering of operations (accomodate latency)?
» preemptive computation?

® Important extensions:
 beyond honest-but-curious security
« eliminating communication
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Conclusion

Work in progress ...

@ Fuller characterisation of improvement provided vs not
using cryptographic methods

® Implementation is in development with
« Shamir’s secret sharing extended to including
multiplication
o fully secure network communication built in
 automatic parsing and evaluation of a provided function
circuits

©® Performance of the technique:
* minimising circuit size?
« optimal ordering of operations (accomodate latency)?
» preemptive computation?

@ Important extensions:
 beyond honest-but-curious security
« eliminating communication

Thank you!
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