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Outline

1 Introduction
• Motivation
• High-level overview of homomorphic encryption
• Discussion of constraints

2 Software
• Discussion of implementation issues and
HomomorphicEncryption R package.

3 Encrypted Machine Learning
• Completely Random Forests (CRF)
• Extreme variant of extremely random forests
• Including ‘stochastic fraction estimator’
• Embarrasingly parallel down to single datum

4 Other / Future Work
• Brief discussion of other complete and in progress projects
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Motivation

Security in statistics and machine learning applications is a
growing concern:

• computing in a ‘hostile’ environment (e.g. cloud
computing);

• donation of sensitive/personal data (e.g. medical/genetic
studies);

• complex models on constrained devices (e.g. smart
watches)

• running confidential algorithms on confidential data
(e.g. engineering reliability)
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Encryption the solution?
Encryption can provide security guarantees …

Enc(kp, m) � c

Easy

Hard without ks

Dec(ks, c) = m

… but is typically ‘brittle’.

Rivest et al. (1978) proposed encryption schemes capable of
arbitrary addition and multiplication may be possible. Gentry
(2009) showed first fully homomorphic encryption scheme.

+
m1 m2 m1 +m2
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Formal definition
Definition (Homomorphic encryption scheme)
An encryption scheme is said to be homomorphic if there is a
set of operations ◦ ∈ FM acting in message space, M , that have
corresponding operations ⋄ ∈ FC acting in cipher text space, C,
satisfying the property:

Dec(ks, Enc(kp, m1) ⋄ Enc(kp, m2)) = m1 ◦ m2 ∀ m1, m2 ∈ M

A scheme is fully homomorphic if FM = {+, ×} and an arbitrary
number of such operations are possible.

{+, ×} pretty limiting? Note that if M = GF(2), then:

• + ≡ ⊻, i.e. XOR, ‘exclusive or’
• × ≡ ∧, i.e. AND, ‘and’

Moreover, any electronic logic gate can be constructed using
only XOR and AND gates.



6/31

Introduction Software Encrypted Machine Learning Other / Future Work

Formal definition
Definition (Homomorphic encryption scheme)
An encryption scheme is said to be homomorphic if there is a
set of operations ◦ ∈ FM acting in message space, M , that have
corresponding operations ⋄ ∈ FC acting in cipher text space, C,
satisfying the property:

Dec(ks, Enc(kp, m1) ⋄ Enc(kp, m2)) = m1 ◦ m2 ∀ m1, m2 ∈ M

A scheme is fully homomorphic if FM = {+, ×} and an arbitrary
number of such operations are possible.

{+, ×} pretty limiting? Note that if M = GF(2), then:

• + ≡ ⊻, i.e. XOR, ‘exclusive or’
• × ≡ ∧, i.e. AND, ‘and’

Moreover, any electronic logic gate can be constructed using
only XOR and AND gates.



7/31

Introduction Software Encrypted Machine Learning Other / Future Work

Limitations of homomorphic encryption

1 Message space (what we can encrypt)
• Commonly only easy to encrypt
binary/integers/polynomials

2 Cipher text size (the result of encryption)
• Present schemes all inflate the size of data substantially
(e.g. 1MB → 16.4GB)

3 Computational cost (computing without decrypting)
• 1000’s additions per sec
• ≈ 50 multiplications per sec

4 Division and comparison operations (equality/inequality
checks)

• Not possible in current schemes!

5 Depth of operations
• After a certain depth of multiplications, need to ‘refresh’
cipher text: hugely time consuming, so avoid!
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We really are doing statistics blindfolded …
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Software
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HomomorphicEncryption R package (Aslett 2014)

All core code in high-performance multi-threaded C++, but
accessible via simple R functions and overloaded operators:

library(”HomomorphicEncryption”)

p <- pars(”FandV”)
k <- keygen(p)
c1 <- enc(k$pk, c(42,34))
c2 <- enc(k$pk, c(7,5))
cres1 <- c1 + c2
cres2 <- c1 * c2
cres3 <- c1 %*% c2
dec(k$sk, cres1)
dec(k$sk, cres2)
dec(k$sk, cres3)

Demo
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Encrypted Machine Learning
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Statistics & Machine Learning Encrypted?

Lots of constraints! Are traditional statistics and machine
learning techniques out of reach to run on encrypted data?
We’ve looked at a semi-parametric naïve Bayes and a variant of
random forests.

So, want to build a random forest on encrypted data … but,

• No comparisons possible to evaluate splits
• No max possible to find highest class vote
• No division possible to do average votes
• …

Thus random forests (and other methods) need to be tailored
for encrypted computation. This is where statistics and
machine learning community can get involved!
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Completely Random Forests (CRFs) — Data encoding

1

xij � R 0 0 0 01
B quantiles

2 Then,

I(xij ≤ bl) =
l∑

k=1
xijk and I(xij > bl) =

B∑
k=l+1

xijk

3 Similarly encode response category c, yi → yic ∈ {0, 1}.
4 Build a decision tree selecting variable j and split point bl

completely at random to a fixed depth.
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CRFs — Tree ‘fitting’, I

Exactly one terminal leaf indicator evaluates to 1, encrypted.
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CRFs — Tree ‘fitting’, I
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CRFs — Tree ‘fitting’, II

xij2

xij1

� b(j2)
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� �
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CRFs — Tree ‘fitting’, II

xij2

xij1

� b(j2)
l2

> b(j2)
l2

� b(j1)
l1

� l1�

k=1

xij1k

� � l1�

k=1

xij1k

�� l2�

k=1

xij2k

� �

�
B�

k=l2+1

xij2k

�

��ic = yic �ic = yic

NB Must evaluate all branches and categories as blindfold.
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CRFs — Prediction

Prediction involves:

• evaluating a new observation through all branches;
• taking product with corresponding vote totals for each
class;

• summing across trees and across leaves to get total votes
for each class.

Random Forests usually use:

1 single vote per tree (requires comparison to find max)
2 relative class frequencies (requires division and [0, 1]
value)

But here trees contribute raw ‘vote’ totals to the prediction:
confused leaves with many votes can overwhealm certain ones
with few.
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CRFs — Raw votes problem

xij2 xij3

xij1

� b(j2)
l2

> b(j2)
l2

� b(j3)
l3

> b(j3)
l3

� b(j1)
l1 > b(j1)

l1

class A B C
votes,

�

i

�ic 78 7 15
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Relative class frequencies

Let νc be the number of votes for class c in a leaf. The relative
class frequency contribution should be:

νc∑
c νc

But, this belongs to [0, 1] which we can’t represent and involves
division.

Target equivalently:

νc

⌊
N∑
c νc

⌉
where N is the number of training observations.

• By construction
∑

c νc ≤ N , so 0 ≤
∑

c
νc

N ≤ 1

• Recall, X ∼ Geometric(p) =⇒ E[X] = p−1
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Stochastic fraction estimate (I)

Thus, an unbiased approximation to fraction is draw from
Geometric distribution with probability

∑
c

νc

N .

Not really helping … any better than division?!

Crucial observation: νc :=
∑N

i=1 νic where νic ∈ {0, 1} ∀ i, c.

(recall νic is 1 if training obs. i was of class c and fell in this leaf
of the decision tree … leaf indices supressed)

=⇒ blind sampling with replacement from
{
∑

c νic : i = 1, . . . , N} will produce an encrypted 1 with

probability exactly
∑

c
νc

N .

=⇒ can blind sample the latent bernoulli process underlying

a Geometric
(

p =
∑

c
νc

N

)
random variable.
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Stochastic fraction estimate (II)

New problem! count number of leading zeros in an encrypted
Bernoulli process.

Inspiration from CPU hardware algorithm for renormalising
the mantissa of an IEEE floating point number.

Let ξ1, . . . , ξM be a resampled vector (ξi =
∑

c ηcj , some j) and
assume M is a power of 2.

1 For l ∈ {0, . . . , log2(M) − 1}:
• Set ξi = ξi ∨ ξi−2l = ξi + ξi−2l − ξiξi−2l ∀ 2l + 1 ≤ i ≤ M

2 The number of leading zeros is M −
∑M

i=1 ξi

Corresponds to increasing power of 2 bit-shifts OR’d with itself,
all computable encrypted.

=⇒
⌊

N∑
c νc

⌉
≈ M −

M∑
i=1

ξi + 1
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Stochastic fraction estimate (III)

CPU hardware algorithm for mantissa normalisation

0

0 0

1 1 0 0

0 1 0 10 1 0 0

0 0 1 0 1 1 0

0 0 1 0 1 1

l = 0

l = 1

l = 2 0 0 1 0

0 0 1 1 1 1 1 1

0 0� 1 1 1 1 1 0

� 0 0 1 1 1 1 1 1

� � M�
�

= 2
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Stochastic fraction estimate (IV)

Bias

Clearly, since blindfolded can’t sample until a 1 observed, so
choose a fixed M and accept small bias.

The shrinkage is mild unless there are fewer than N
M

observations in the leaf, in which case the shrinkage is more
extreme: this is desirable because it shrinks the influence of
underpopulated leaves.

e.g. N = 1000, M = 32 =⇒ heavy shrinkage for leaves with
< 31 observations.

Computational consideration

Multiplicative depth of this algorithm is M , which must be
factored into tree building.
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Theoretical homomorphic scheme requirements

To build a forest of trees with L levels, the homomorphic
encryption scheme must support:

• depth L multiplications for tree building
• depth L + M for stochastic fraction adjustment
• depth 2L + M for building, adjustment and prediction.

Furthermore, for the current generation of Ring Learning With
Errors encryption schemes where the message space is a
polynomial ring, it must support coefficients up to
T max{

∑
i yic : c = 1, . . . , |C|}.



24/31

Introduction Software Encrypted Machine Learning Other / Future Work

Results (I)
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Results (II)
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Stochastic fraction effect (best)
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Stochastic fraction effect (worst)
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Computational considerations

Note that CRFs are parallelisable right down to the individual
observation, which helps with ameliorating the cost of
encrypted computation.

Wisconsin data (N = 547)

• Launched
2 × 18 servers × 32 cores = 1, 152 CPU
core cluster on Amazon EC2
⇒ 576 Dublin & 576 São Paulo

• Fit 50 trees in Dublin, 50 in São Paulo
• unique set.seed() for each region

• Data split into 17 shards of 32 obs + 1
shard 3 obs ⇒ 1 datum per core!

• Reduction sum of votes in each region and
combine regions ⇒ 100 tree forest

1h 36m

US$ 23.86
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Other / Future Work
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Other / Future Work

1 Semi-parametric naive Bayes with logistic decision
boundary

• embedded approximation to logistic regression

2 Linear models (see Pedro’s talk)
• gradient decent based method
• ridge penalties
• lasso(?)

3 Multi-party evaluation of system reliability
• keep system design secret
• keep component lifetime test data secret

4 Approximate Bayesian Computation
• classifier replacing summary statistics
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