Data Science and Statistics in the Amazon Cloud with R

Louis J. M. Aslett (aslett@stats.ox.ac.uk)

Department of Statistics, University of Oxford and Corpus Christi College, Oxford

RGU Computing Research Seminar 4 November 2015

Introduction	AWS Background	The RStudio AMI	Your Own R Cluster	Case Study	Future plans

"The old days ..."

Redbus Interhouse, Harbour Exchange Square, London Docklands, 24 Hikkorguk March 2005

R in the cloud

By cloud, I mean an online service which allows users to create and destroy virtual servers remotely without having to worry about initial hardware and OS installation and where billing is in very small increments (e.g. hours).

There are several cloud providers, including:

- Amazon EC2
 - http://aws.amazon.com/
- Digital Ocean
 - http://www.digitalocean.com/
- Google Compute Engine
 - http://cloud.google.com/
- Rackspace Cloud Servers
 - http://www.rackspace.co.uk/
- Windows Azure VMs
 - http://www.windowsazure.com/

Introduction AWS Background The RStudio AMI Your Own R Cluster Case Study Future plans

Why R in the cloud?

- Long analyses
- Collaboration
- Powerful AWS instances, with access to GPUs
- Online data sources
- Full environment with C/C++/Fortran, IAT_EX+ Sweave, Git + Subversion ready-to-go.
- Access to the power of Linux without having to dedicate your own machine to running it.

Why Amazon Web Services (AWS)?

Today, AWS is the only the service which ticks all the following (subjectively) important boxes for HPC in statistics, though this is a *fast* moving business:

• Repository for community development of images so users can boot ready-to-run machines with more than just bare operating system (bit like package system in R).

Why Amazon Web Services (AWS)?

- Repository for community development of images so users can boot ready-to-run machines with more than just bare operating system (bit like package system in R).
- A permanent storage medium for each machine which can persist independently of the running state of the server.

Why Amazon Web Services (AWS)?

- Repository for community development of images so users can boot ready-to-run machines with more than just bare operating system (bit like package system in R).
- A permanent storage medium for each machine which can persist independently of the running state of the server.
- Billing which suspends while the server is stopped, but where the above persistent storage remains alive.

Why Amazon Web Services (AWS)?

- Repository for community development of images so users can boot ready-to-run machines with more than just bare operating system (bit like package system in R).
- A permanent storage medium for each machine which can persist independently of the running state of the server.
- Billing which suspends while the server is stopped, but where the above persistent storage remains alive.
- A free tier of instances so everyone can try it without cost.

Why Amazon Web Services (AWS)?

- Repository for community development of images so users can boot ready-to-run machines with more than just bare operating system (bit like package system in R).
- A permanent storage medium for each machine which can persist independently of the running state of the server.
- Billing which suspends while the server is stopped, but where the above persistent storage remains alive.
- A free tier of instances so everyone can try it without cost.
- Everything from micro instances to the current state of the art in HPC, including machines with nVidia GPUs for CUDA support. (See also benchmarks)

Why Amazon Web Services (AWS)?

- Repository for community development of images so users can boot ready-to-run machines with more than just bare operating system (bit like package system in R).
- A permanent storage medium for each machine which can persist independently of the running state of the server.
- Billing which suspends while the server is stopped, but where the above persistent storage remains alive.
- A free tier of instances so everyone can try it without cost.
- Everything from micro instances to the current state of the art in HPC, including machines with nVidia GPUs for CUDA support. (See also benchmarks)
- A 'stock-market' for unused compute capacity, enabling heavily discounted compute jobs.

There are some cons to AWS, though again these could be addressed in future:

- Billing is in full hour increments (Google Compute Engine is in minutes)
- There are no guarantees of availability: Amazon explicitly intend users to design for instance failure in the use cases. There have been high profile outages in the US East Coast data centre
- High barrier to learning

Introduction	AWS Background	The RStudio AMI	Your Own R Cluster	Case Study	Future plans

AWS Background

i-like.org.u

Amazon Web Services (AWS)

Amazon used to buy in huge server capacity to keep their website up just for the Christmas shopping spree ... rest of the year large parts of server farm sat mostly idle.

Launched 2006. By December 2014, 1, 400, 000 servers operating in 28 data centres across 7 countries:

- Dublin, Ireland
- Frankfurt, Germany
- North Virginia, United States
- Oregon, United States
- Northern California, United States
- Singapore, Republic of Singapore
- Tokyo, Japan
- Sydney, Australia
- São Paulo, Brazil

Some of the relevant AWS ecosystem

- EC2 (Elastic Compute Cloud)
 - is the service which enables launching virtual servers
- EBS (Elastic Block Storage)
 - persistent block level storage for use with EC2
- VPC (Virtual Private Cloud)
 - for creation of virtual LANs within AWS for private networking
- S3 (Simple Storage Service)
 - for resiliant storage of data independent of instances
- RDS (Relational Database Server) / DynamoDB
 - managed SQL and NoSQL databases
- SQS (Simple Queuing Service)
 - highly scalable and reliable atomic messaging service

- Instance
 - a virtual server running on EC2
- Volume
 - a cloud 'hard drive' which is attached to an instance
- AMI (Amazon Machine Image)
 - a bundle of operating system and pre-loaded applications to boot on an instance
- Stop -vs- terminate
 - *stop*: similar to powering down a computer. Cease paying by the hour, just pay by the month for EBS volume (\$0.10/GB/mo). Start and instance boots same machine.
 - *terminate*: power down and destroy all data.
- On-demand/Spot instance
 - on demand: immediately available, fixed price per hour
 - *spot*: ephemeral instance, price follows Amazon 'stock-market'

Your Own R Cluster

ase Study F

Future plans

Demo: launching a virtual server on EC2

Demo (without launching)

Interacting with EC2

- Web interface
- REST API accessible from an array of languages/platforms
 - Android, iOS, *nix, Mac, Windows
 - Javascript, Java, .NET, Node.js, PHP, Python, Ruby, Go, shell
 - interestingly, no official R API yet! However, http://cloudyr.github.io/ looks promising.

Interacting with EC2 : example

```
EC2 CLI tools:
https://aws.amazon.com/developertools/351
```

```
for Reg in eu-west-1 eu-central-1 us-east-1 us-west-1 \setminus
           us-west-2 sa-east-1 ap-southeast-1 \
           ap-northeast-1 ap-southeast-2
do
    ec2-describe-spot-price-history \
        -t m3.medium \
        --region $Reg \
        -d "Linux/UNIX (Amazon VPC)" \
        -s 'date "+%Y-%m-%dT%H:%M:00"' \
        | cut -f 2,3,4,6
done;
```


Introduction	AWS Background	The RStudio AMI	Your Own R Cluster	Case Study	Future plans

The RStudio AMI

i-like.org.u

So,

- AWS enables rapid launching of instances from a set of different operating systems.
- However, they're bare bones systems
 - it's up to you to setup up the system as you want it
 - not hard for the technically literate ... but definitely *time consuming*
- Any AWS user can create AMIs of systems so that they can boot directly to a system they have previously setup
 - an AMI is like a bare metal image of a system which can be restored to any new instance.
- The AMIs I provide is a public share of the pre-setup R system I use and have integrated user feedback and requests.

Kee http://www.louisaslett.com/RStudio_AMI/

Introduction	AWS Background	The RStudio AMI	Your Own R Cluster	Case Study	Future plans
What's	included?				

• 10GB EBS image on SSD backed storage

Introduction	AWS Background	The RStudio AMI	Your Own R Cluster	Case Study	Future plans
What's	included?				

- 10GB EBS image on SSD backed storage
- 64-bit HVM images for best performance

Introduction	AWS Background	The RStudio AMI	Your Own R Cluster	Case Study	Future plans
What's	included?				

- 10GB EBS image on SSD backed storage
- 64-bit HVM images for best performance
- Full LATEX distribution, supporting RMarkdown and Sweave

Introduction	AWS Background	The RStudio AMI	Your Own R Cluster	Case Study	Future plans
What's	included?				

- 10GB EBS image on SSD backed storage
- 64-bit HVM images for best performance
- Full LATEX distribution, supporting RMarkdown and Sweave
- GSL and CURL

Introduction	AWS Background	The RStudio AMI	Your Own R Cluster	Case Study	Future plans
What's in	ncluded?				

- 10GB EBS image on SSD backed storage
- 64-bit HVM images for best performance
- Full LATEX distribution, supporting RMarkdown and Sweave
- GSL and CURL
- Database support
 - ODBC
 - RMySQL pre compiled

Introduction AWS	S Background	The RStudio AMI	Your Own R Cluster	Case Study	Future plans
What's inc	luded?				

- 10GB EBS image on SSD backed storage
- 64-bit HVM images for best performance
- Full LATEX distribution, supporting RMarkdown and Sweave
- GSL and CURL
- Database support
 - ODBC
 - RMySQL pre compiled
- Git & Subversion support

Introduction	AWS Background	The RStudio AMI	Your Own R Cluster	Case Study	Future plans
What's	included?				

- 10GB EBS image on SSD backed storage
- 64-bit HVM images for best performance
- Full LATEX distribution, supporting RMarkdown and Sweave
- GSL and CURL
- Database support
 - ODBC
 - RMySQL pre compiled
- Git & Subversion support
- Probabilistic programming languages Stan and JAGS for MCMC sampling

Introduction	AWS Background	The RStudio AMI	Your Own R Cluster	Case Study	Future plans
What's	included?				

- 10GB EBS image on SSD backed storage
- 64-bit HVM images for best performance
- Full LATEX distribution, supporting RMarkdown and Sweave
- GSL and CURL
- Database support
 - ODBC
 - RMySQL pre compiled
- Git & Subversion support
- Probabilistic programming languages Stan and JAGS for MCMC sampling
- Arbitrary precision arithmetic and number theory libraries
 - GMP, MPFR, FLINT

- 10GB EBS image on SSD backed storage
- 64-bit HVM images for best performance
- Full $\ensuremath{\texttt{FT}}\xspace{\texttt{FX}}$ distribution, supporting RMarkdown and Sweave
- GSL and CURL
- Database support
 - ODBC
 - RMySQL pre compiled
- Git & Subversion support
- Probabilistic programming languages Stan and JAGS for MCMC sampling
- Arbitrary precision arithmetic and number theory libraries
 - GMP, MPFR, FLINT
- Optimised BLAS for accelerated matrix operations

- 10GB EBS image on SSD backed storage
- 64-bit HVM images for best performance
- + Full $\ensuremath{\mathbb{F}}\xspace{TEX}$ distribution, supporting RMarkdown and Sweave
- GSL and CURL
- Database support
 - ODBC
 - RMySQL pre compiled
- Git & Subversion support
- Probabilistic programming languages Stan and JAGS for MCMC sampling
- Arbitrary precision arithmetic and number theory libraries
 - GMP, MPFR, FLINT
- Optimised BLAS for accelerated matrix operations
- Dropbox integration

What's not included?

- Every R package (obviously!). But, fast AWS based mirror is automatically set for quick installation of new pacakges.
- Easy cluster setup (yet ... some things perhaps harder to automate well). See next section of talk.

Introduction AWS Background The RStudio AMI Your Own R Cluster Case Study Future plans Most important thing to remember

... is to allow port 80 through the AWS EC2 firewall!

This is done by setting up your security group on instance launch.

Demo (including launch, RMarkdown, Stan)

i-like.org.

Introduction	AWS Background	The RStudio AMI	Your Own R Cluster	Case Study	Future plans

Your Own R Cluster

i-like.org.u

Just make sure your security group is open for all ports to the world ...

Cluster setup ... if you do care about security

Create a Virtual LAN with private subnet.

Recall, 10.0.0/16 \implies 10.0.00 – 10.0.255.255 (65536 hosts)

👔 AWS ~ Se	ervices 🛩 Edit 🗸		DR LJM ASLETT 🗸	N. Virginia 👻 Support 🗸
VPC Dashboard Filter by VPC:	Create VPC Action	ns 👻		2 \$ 0
None	Create VPC			x to 1 of 1 VPC > >>
Virtual Private Clou	A VPC is an isolated portion of	of the AWS cloud populated by AWS objects, s	uch as Amazon EC2	set 👻 Route ta
Your VPCs	instances. Use the Classless	Inter-Domain Routing (CIDR) block format to sp	pecify your VPC's	rtb-38654
Subnets	contiguous IP address range,	, for example, 10.0.0.0/16. You cannot create a	VPC larger than /16.	
Route Tables	Name tag	RStudio	0	
Internet Gateways	CIDR block	10.0.0/16	0	
DHCP Options Sets	Tenancy	Default 🗘 🛈		
Elastic IPs		_		
Endpoints		Ca	ncel Yes, Create	
Peering Connections				
Security				
Network ACLs				
Security Groups				

Split that subnet among the availability zones as you wish

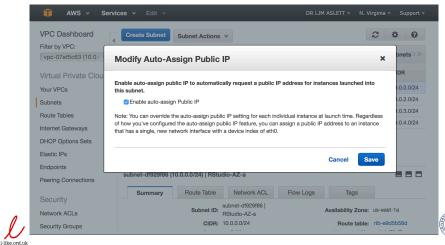
Recall, 10.0.0/24 \implies 10.0.00 – 10.0.0.255 (256 hosts)

👔 AWS - S	ervices 🗸 Edit 🗸	DR	LJM ASLETT - N. V	√irginia → Support →
VPC Dashboard	Create Subnet	ubnet Actions v		2 0
None	Create Subnet		×	of 3 Subnets > >>
Virtual Private Clou Your VPCs Subnets		cify your subnet's IP address block (e.g., 10.0.0.0/24). I nask and /28 netmask. Also, note that a subnet can be		CIDR 10.0.4.0/24 10.0.0.0/24
Route Tables	Name tag	RStudio-AZ-a	0	10.0.2.0/24
Internet Gateways	VPC	vpc-07ef5c63 (10.0.0/16) RStudio 🗘 🕄		
DHCP Options Sets	Availability Zone	us-east-1a 🛊 🛈		
Elastic IPs	CIDR block	10.0.0/24	0	
Endpoints				
Peering Connections		Cancel	Yes, Create	
Security Network ACLs Security Groups				

Split that subnet among the availability zones as you wish

Recall, 10.0.4.0/24 \implies 10.0.4.0 – 10.0.4.255 (256 hosts)

🎁 AWS 🗸 Se	ervices 🗸 Edit 🗸			DR LI	M ASLETT 🗸 🛛 N. VI	irginia 👻 Support 🕶
VPC Dashboard	Create Subnet	ubnet Actions 👻				2 4 0
Filter by VPC: None	Create Subnet				×	of 4 Subnets > >>
Virtual Private Clou	Use the CIDR format to spe	afu vour euboot'e IP	address block (e.g.	10.0.0.0/24) Not	a that block sizes	- CIDR
Your VPCs	must be between a /16 netn					10.0.0/24
Subnets	your VPC.					10.0.4.0/24
Route Tables	Name tag	RStudio-AZ-e			0	10.0.0/24
Internet Gateways	VPC	vpc-07ef5c63 (10.0.0.0/16) RSt	udio 🛊 🛈		10.0.2.0/24
DHCP Options Sets	Availability Zone	us-east-1e	¢ 0			
Elastic IPs	CIDR block	10.0.4.0/24			0	
Endpoints						
Peering Connections				Cancel	Yes, Create	
	Summary	Route Table	Network ACL	Flow Logs	Tags	
Security		sub	net-df929f86			
Network ACLs		Subnet ID: RSI	tudio-AZ-a		Availability Zone:	
Security Groups		CIDR: 10.	0.0.0/24		Route table:	rtb-e9d5b58d


Enable auto-assignment of public IP (I)

Auto-assigning a public IP will allow you to get in to all hosts remotely for diagnostics etc.

🎁 AWS ~ Servic	es 🕶 Edit 👻			DR L	JM ASLETT 👻 N. Virgini	a 🗸 Support 🗸
VPC Dashboard Filter by VPC:	Create Subnet	Subnet Actions	•		₽ ≪<1 to 4 of	✿ Ø
Virtual Private Cloud	Name	Create Flow Lo Modify Auto-As	State	- VPC		CIDR
Your VPCs	RStudio-AZ-a	subner	-oiszsioo availa	ble vpc-07e	f5c63 (10.0.0/16) RS	10.0.0/24
Subnets	RStudio-AZ-c	subnet	-ee16b7d3 availa	ble vpc-07e	f5c63 (10.0.0.0/16) RS	10.0.2.0/24
Route Tables	RStudio-AZ-d	subnet	-37b65c41 availa	ble vpc-07e	f5c63 (10.0.0.0/16) RS	10.0.3.0/24
Internet Gateways	RStudio-AZ-e	subnet	-192c1032 availa	ble vpc-07e	f5c63 (10.0.0.0/16) RS	10.0.4.0/24
DHCP Options Sets						
Elastic IPs						
Endpoints						
Peering Connections	subnet-df929f86 (1	10.0.0.0/24) RStu	idio-AZ-a			
Security	Summary	Route Table	Network ACL	Flow Logs	Tags	
Network ACLs		Subnet ID:	subnet-df929f86 RStudio-AZ-a		Availability Zone: us-e	ast-1a
Security Groups		CIDR:	10.0.0/24		Route table: rtb-	e9d5b58d

Enable auto-assignment of public IP (II)

Auto-assigning a public IP will allow you to get in to all hosts remotely for diagnostics etc.

28/45

Add an internet router (I)

Ensure that traffic can be routed between the internet and your LAN ...

👔 AWS 🗸 Sen	vices 🕶 Edit 🛩	DR LJM ASLETT + N. Virginia + Support +
VPC Dashboard	Create Internet Gateway Delete Attach t	to VPC Detach from VPC
vpc-07ef5c63 (10.0.1	Create Internet Gateway	★ et Gateways > ≫
Virtual Private Clou Your VPCs	An Internet gateway is a virtual router that connects a VPC	to the Internet.
Subnets	Name tag RStudio-Gateway	•
Route Tables		Cancel Yes. Create
Internet Gateways		Cancel Yes, Create
DHCP Options Sets		
Elastic IPs		
Endpoints	Select an Internet gateway above	880
Peering Connections	Select an internet gateWay above	
Security		
Network ACLs		
Security Groups		

Add an internet router (II)

... and attach to your virtual LAN ...

👔 AWS 🗸 Se	ervices 🗸 Edit 🗸	DR LJM ASLETT 👻 N. Virginia 👻 Support 👻
VPC Dashboard	Create Internet Gateway Delete Attach to VPC	Detach from VPC
None	Attach to VPC	× vet Gateways > ≫
Virtual Private Clou Your VPCs	Attach an Internet gateway to a VPC to enable communication with	the Internet.
Subnets Route Tables	VPC vpc-07ef5c63 (10.0.0./16) RS	tudio 🗘 🛈
Internet Gateways DHCP Options Sets		Cancel Yes, Attach
Elastic IPs Endpoints		
Peering Connections	igw-89baafec RStudio-Gateway	880
Security Network ACLs	Summary Tags igw-89baafec RStudio-Gateway	Attached VPC ID:
Security Groups	State: detached	Attachment state:

29/45

... and insert to routing table.

🎁 AWS - Servie	ces 🗸 Edit 🗸			DR I	LJM ASLETT 🗸	N. Virginia	• Support •
VPC Dashboard	Create Route Table	Delete Route Table	Set As N	Vain Table		C	¢ 0
Filter by VPC: vpc-07ef5c63 (10.0.1 \$	Q Search Route Ta	bles and the X			« < 1	to 1 of 1 Rou	ite Table $>$ \gg
Virtual Private Cloud	Name	 Route Table ID 	- Explic	citly Associat~	Main - V	PC	
Your VPCs		rtb-e9d5b58d	0 Subr	nets	Yes v	pc-07ef5c63 (1	0.0.0.0/16) RS
Subnets Route Tables	rtb-e9d5b58d						
Internet Gateways	Summary	Routes Sub	bnet Associati	ons Route	Propagation	Tag	3
DHCP Options Sets	Cancel Save						
Elastic IPs Endpoints	Destination	Target	Status	Propagated	Remove		
Peering Connections	10.0.0/16	local	Active	No			
	0.0.0.0/0	igw-89baafec		No	0		
Security	Add another route						
Network ACLs							
Security Groups							

30/45

Modify security group

Allow limited inbound traffic over the router so you can SSH and access RStudio web interface.

NOTE: double check no internal traffic firewalled!

🎁 AWS ~ Servic	es 🕶 Edit 👻		DR LJM A	SLETT - N. Virgin	ia 👻 S	upport 🗸
VPC Dashboard	Create Security Group	Delete Security Group		C	٥	0
Filter by VPC: vpc-07ef5c63 (10.0. \$	Filter All security groups -	Q Search Security Groups a	nd X	1 to 1 of 1 Sec	urity Gro	wp>>>
Virtual Private Cloud	Name tag	Group ID - Group Name	- VPC		- Des	cription
Your VPCs		sg-0bc0716d default	vpc-07e	f5c63 (10.0.0.0/16)	. defa	ult VPC se
Subnets						
Route Tables	sg-0bc0716d				_	
Internet Gateways	Summary	d Rules Outbound Rules	Tags			
DHCP Options Sets	Cancel Save					
Elastic IPs	-			-		-
Endpoints	Туре	Protocol	Port Range	Source		Remov
Peering Connections	ALL Traffic \$	ALL \$	ALL	sg-0bc0716d	0	0
	SSH (22) \$	TCP (6) +	22	0.0.0/0	0	0
Security	HTTP (80) \$	TCP (6) \$	80	0.0.0/0	0	Θ
Network ACLs	Add another rule					
Security Groups	Add another rule					

Future plans

Ensure you select this VPC when launching ...

🎁 AWS 🗸 Services 🗸 Edit		DR LJM ASLETT + N. Virginia + Support +
1. Choose AMI 2. Choose Instance Type 3	Configure Instance 4. Add Storage 5. Tag Spot Requ	6. Configure Security Group 7. Review
Step 3: Configure Instance	Details us-east-1e 0.126	
Maximum price (j)	\$ 0.2	
Launch group 🧃	(Optional)	
Request valid from (i)	Any time Edit	
Request valid to 🧃	Any time Edit	
Persistent request (j)	Persistent request	
Network (j)	vpc-07ef5c63 (10.0.0/16) RStudio	Create new VPC
Subnet 🧃	subnet-df929f86(10.0.0.0/24) RStudio-AZ-a us-east-1a	Create new subnet
	251 IP Addresses available	
Auto-assign Public IP 🧃	Use subnet setting (Enable)	0
Placement group (j)	No placement group	0
	Cancel Previous	Review and Launch Next: Add Storage

... and change security group to the VPC default

nstance. For example, if you	rewall rules that control the want to set up a web serve	traffic for your instance. O ar and allow Internet traffic	n this page, you can add rule to reach your instance, add existing one below. Learn n	rules that allow unn	estricted access to
Assign	a security group: Oreat	e a new security group			
	 Selection 	t an existing security grou	р		
				Filter	VPC security groups
Security Group ID	Na	me Descript	ion		Actions
sq-0bc0716d	del	ault default VI	PC security group		Copy to new
Inbound rules for sg-0bc0	716d (Selected security g	roups: sg-0bc0716d)			
Type (i)	Protocol (i)	Port	Range (i)	Source (i)	
HTTP	TCP	80		0.0.0/0	
All traffic	All	All		sg-0bc0716d ((default)
SSH	TCP	22		0.0.0/0	
			Cancel	Previous	Review and Launc

Future plans

34/45

Cluster example (I)

Say my private RSA key is in k.pem. First, upload to the instance, then make the correct permissions for SSH:

```
system("chmod 600 k.pem")
```

Now, launch R across the cluster with one command:

```
library("parallel")
cl <- makePSOCKcluster(
   rep(c("localhost", "10.0.0.58", "10.0.4.249"), 36),
   rshcmd="ssh -i k.pem -o StrictHostKeyChecking=no",
   user="ubuntu",
   master=system("hostname --all-ip-addresses", TRUE))</pre>
```


Ensure that all the packages you need are installed on all the nodes, then:

- use clusterEvalQ(), clusterApply() or clusterApplyLB() to launch parallel jobs.
- or optionally hook into the foreach framework, for easy to use %dopar% construct:

library("doParallel")
registerDoParallel(cl)

Cluster example (III)

For example, fitting a random forest on large data is then trivial:

```
library("randomForest")
fit <- foreach(nt=rep(5, 36*3), .combine=combine,
                .packages="randomForest") %dopar% {
    load("myDat.RData")
    randomForest(resp ~ ., data=myDat, ntree=nt)
}</pre>
```


Introduction	AWS Background	The RStudio AMI	Your Own R Cluster	Case Study	Future plans

Case Study

Encrypted statistical machine learning

Modern cryptographic techniques promise to allow privacy to be preserved whilst still allowing computation to be performed, unlike the usual encryption schemes such as AES.

However, these so-called *homomorphic encryption* schemes are currently very computationally demanding and restrictive in the types of computation which can be performed.

Recent work¹ has shown that tailored methods can be built which are competitive with unencrypted machine learning methods, but computational demand is high.

¹Aslett, L. J. M., Esperança, P. M. and Holmes, C. C. (2015), Encrypted statistical machine learning: new privacy preserving methods. ¹Beorguk arXiv:1508.06845 [stat.ML].

Homomorphic encryption

Definition (Homomorphic encryption scheme)

An encryption scheme is said to be *homomorphic* if there is a set of operations $\circ \in \mathcal{F}_M$ acting in message space (such as addition) that have corresponding operations $\diamond \in \mathcal{F}_C$ acting in cipher text space satisfying the property:

 $\mathsf{Dec}(k_s,\mathsf{Enc}(k_p,m_1)\diamond\mathsf{Enc}(k_p,m_2))=m_1\circ m_2 \quad \forall \ m_1,m_2\in M$

A scheme is *fully homomorphic* if $\mathcal{F}_M = \{+, \times\}$ and an arbitrary number of such operations are possible. Cartoon version:

Fitting a Completely Random Forest (CRF) encrypted

To show the techniques of the paper are practical required showing you can fit a CRF in a reasonable time (while you have lunch, say) and without extreme cost (don't want to write a grant application just for hardware to run it).

Enter Amazon Web Services ...

As a proof of concept, we encrypted the Wisonsin breast cancer prognosis data set locally, resulting in 13.8GB of encrypted data.

Introduction	AWS Background	The RStudio AMI	Your Own R Cluster	Case Study	Future plans
The AW	'S run				

- The spot pricing script earlier was used to determine the cheapest region spot prices for the c3.8xlarge instances
 - 32 cores (Intel Xeon E5-2680 v2), 60GB memory.

- The spot pricing script earlier was used to determine the cheapest region spot prices for the c3.8xlarge instances
 - 32 cores (Intel Xeon E5-2680 v2), 60GB memory.
- The 13.8GB of encrypted data was uploaded to an S3 bucket in Dublin, Ireland and from there copied to São Paulo, Brazil. It was split into 18 'shards' before upload.

- The spot pricing script earlier was used to determine the cheapest region spot prices for the c3.8xlarge instances
 - 32 cores (Intel Xeon E5-2680 v2), 60GB memory.
- The 13.8GB of encrypted data was uploaded to an S3 bucket in Dublin, Ireland and from there copied to São Paulo, Brazil. It was split into 18 'shards' before upload.
- 18 spot requests in each region $\implies 1,152$ CPU cores.

- The spot pricing script earlier was used to determine the cheapest region spot prices for the c3.8xlarge instances
 - 32 cores (Intel Xeon E5-2680 v2), 60GB memory.
- The 13.8GB of encrypted data was uploaded to an S3 bucket in Dublin, Ireland and from there copied to São Paulo, Brazil. It was split into 18 'shards' before upload.
- 18 spot requests in each region $\implies 1,152$ CPU cores.
- Each (slighly modified) RStudio AMI instance fitted 50 trees to 1 of the shards.

- The spot pricing script earlier was used to determine the cheapest region spot prices for the c3.8xlarge instances
 - 32 cores (Intel Xeon E5-2680 v2), 60GB memory.
- The 13.8GB of encrypted data was uploaded to an S3 bucket in Dublin, Ireland and from there copied to São Paulo, Brazil. It was split into 18 'shards' before upload.
- 18 spot requests in each region $\implies 1,152$ CPU cores.
- Each (slighly modified) RStudio AMI instance fitted 50 trees to 1 of the shards.
- Upon completion, encrypted subtree uploaded to S3 again.

- The spot pricing script earlier was used to determine the cheapest region spot prices for the c3.8xlarge instances
 - 32 cores (Intel Xeon E5-2680 v2), 60GB memory.
- The 13.8GB of encrypted data was uploaded to an S3 bucket in Dublin, Ireland and from there copied to São Paulo, Brazil. It was split into 18 'shards' before upload.
- 18 spot requests in each region $\implies 1,152$ CPU cores.
- Each (slighly modified) RStudio AMI instance fitted 50 trees to 1 of the shards.
- Upon completion, encrypted subtree uploaded to S3 again.
- Total cost: \$23.86 (≈ £15.66)

- The opportunity cost to maintain cryptographic security is 2 hours of time and \$23.86.
- To buy 36 servers with 32 cores of Intel Xeon Ivy Bridge and 60GB RAM would be prohibitive for the occasional encrypted fit.
- The RStudio AMI reduced the time to working substantially.

Introduction	AWS Background	The RStudio AMI	Your Own R Cluster	Case Study	Future plans

Future plans

i-like.org.u

• GPU AMI

- more built in cluster tools
 - avoid need to install tools on nodes
 - · helper functions to install supporting packages
 - helper function to launch PSOCK clusters
- Migration tools to upgrade when new AMIs released
- Tools to add multiple user accounts and manage server resources

Please give feedback – I would love ideas for what else would make the AMIs more useful!

There is no paper currently, so please use a standard software citation if you use them:

Aslett, L. J. M. (2015), *RStudio AMIs for Amazon EC2 cloud computing*. AMI ID ami-ae05a1d9. **URL:** http://www.louisaslett.com/RStudio_AMI/

and simply replace the AMI ID with the version used for reproducibility.

Thanks

