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Motivation

Security in statistics applications is a growing concern:

• computing in a ‘hostile’ environment (e.g. cloud
computing);

• donation of sensitive/personal data (e.g. medical/genetic
studies);

• complex models on constrained devices (e.g. smart
watches)

• running confidential algorithms on confidential data
(e.g. engineering reliability)
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Perspectives on “privacy”

• Differential privacy
• on outcomes of ‘statistical queries’
• guarantees of privacy for individual observations

• Data privacy
• at rest
• during fitting
• data pooling

• Model privacy
• prior distributions
• model formulation
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The perspective for today …

• Eve has a private model, including prior information
which may itself be private.

• Cain and Abel have private data which is relevant to the
fitting of Eve’s model.

Can Eve fit a model, pooling data from Cain and Abel without
observing their raw data and without revealing her model and
prior information? Abel also doesn’t trust Cain …

�(· | �)
�(�)

{xi = (xi1, . . . , xid)}n1

i=1

{xi = (xi1, . . . , xid)}Ni=n1+1
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Cryptography the solution?
Encryption can provide security guarantees …

Enc(kp, m) � c

Easy

Hard without ks

Dec(ks, c) = m

… but is typically ‘brittle’.

Arbitrary addition and multiplication is possible with fully
homomorphic encryption schemes (Gentry, 2009).

+
m1 m2 m1 +m2

c1 c2

Enc(kp, ·)

�
c1 � c2

Dec(ks, ·)
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Back to the problem …
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�

✗ Likelihood restricted to low 
degree polynomials
✗ Can only handle very small N due 
to multiplicative depth
✗ MAP/posterior? How? MCMC?

✗ Who holds secret key?
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(Simplified) look at Homomorphic Secret Sharing
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Eve, Cain & Abel
�(· | �)
�(�)

{xi = (xi1, . . . , xid)}n1
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Approximate Bayesian Computation
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Approximate Bayesian Computation

1 Sample ψj ∼ π(ψ), j ∈ {1, . . . ,m}
2 For each ψj , simulate a dataset Yj from π(· |ψj) of the
same size, N , asX.

3 Accept ψj if d(S(X), S(Yj)) < ε.

Where S(·) is some (vector) of summary statistics; d(·, ·) is a
distance metric; and ε is a user defined threshold.

When S(·) is sufficient and ε → 0, this procedure will converge
to the usual Bayesian posterior.

Benefit: Eve can do steps 1 & 2 and encrypt her simulated
data, eliminating need for function privacy.

Problems: d(·, ·) can only be low degree polynomials;
Must compute S(·) secretly for Cain and Abel’s pooled data;
Naïve ABC performs poorly & choosing ε blindfolded.
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Naïve encrypted ABC (I) – Eve & data owners 1, . . . , P

1 Eve samples ψj ∼ π(ψ), j ∈ {1, . . . ,m}; simulates datasets
Yj of size N from π(· |ψj); and computes S(Yj).

2 Eve computes HSS shares S⋆p(Yj), p ∈ {1, . . . , P + 1};
• send S⋆p(Yj) to data owner p
• retain S⋆P +1(Yj)

3 Data owners k ∈ {1, . . . , P} create HSS shares S⋆p(Xk),
p ∈ {1, . . . , P + 1}

• send S⋆p(Xk) to data owner p (retaining when p = k)
• send S⋆P +1(Xk) to Eve

4 All compute S⋆p(X) = S̃ (
∪

k S
⋆p(Xk)), where S̃(·) is a

homomorphically computable pooling function.

5 All compute d⋆p
j = d (S⋆p(X), S⋆p(Yj)), where d(·) is a

homomorphically computable distance metric.
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Naïve encrypted ABC (II) – Eve & data owners 1, . . . , P

6 All send their shares, d⋆p
j , to a randomly chosen data

owner k ∈ 1, . . . , P

7 Data owner k reconstructs dj = Dec(d⋆1
j , . . . , d

⋆P +1
j )

8 Data owner k sends to Eve a list of those indices j such
that dj < ε.
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Naïve encrypted ABC (III) – in pictures

�(· | �)

�(�) X1 = {xi = (xi1, . . . , xid)}n1

i=1

X2 = {xi = (xi1, . . . , xid)}Ni=n1+1

S�(X) = S̃ (X�
1 , X�

2 , S�(X1), S
�(X2))

{�j}m
j=1

{S�(Yj)}m
j=1

d�
j = d(S�(Yj), S

�(X))

dj = Dec(d�Eve
j , d�Cain

j , d�Abel
j )

J = {j : dj < �}

Accept {�j : j � J }
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Points to note

• Samples ψj are never seen by Cain and Abel

• Eve learns only an accept/reject
• Final distances between summary statistics decrypted by
Cain or Abel

• Cain and Abel do not learn about each other’s data
• only see composite distance between pooled summary
stats and Eve’s simulation

• can make distances information theoretically secure by
adding random values generated by Cain, Abel and Eve

• BUT, Cain and Abel do have to know S(·), which in most
ABC settings is model dependent =⇒ risk to Eve
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Obstacles to cryptographic ABC

• Homomorphically computable pooling of summary
statistics

• Summary statistics that don’t reveal model

• Homomorphically computable distance metric

• Blindfold selection of ε

• Propose using ABC-PMC/SMC, with distance chosen to
retain α% of samples instead. Eve then uses accepted ψj on
step t to propose step t+ 1 and repeat algorithm.

• Standard idea — details omited.
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Cryptographically Secure Inference
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Collection of Coarse Random Marginals (CCRM)

Construct in the manner of a decision forest:

• Grow T trees, each to predetermined fixed depth L
• Choose variable v ∈ {1, . . . , d} uniformly at random
• Each split point uniformly at random in range of x·v

• Thus Cain and Abel must provide range of each variable in
the data, though this range need not be tight

• e.g. release (mini xiv + η,maxi xiv + η) for η ∼ N(0, σ2)
with σ2 chosen not to exclude too large a range

• s = S(·) is then the counts of observations in each
terminal leaf

• vector of T2L counts
• S̃(·) is then simply vector addition

• Define

d(S(X), S(Yj)) =
T 2L∑
i=1

(
sX

i − s
Yj

i

)2
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Collection of Coarse Random Marginals (CCRM)
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S(X) = (. . . , 3, 3, 0, 3, 43, 33, 64, 24, . . . )
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CCRM solutions

• Homomorphically computable pooling of summary
statistics

• simple vector addition

• Summary statistics that don’t reveal model
• CCRM is completely random, grown the same way for
all models and data sets. Only weak information about
range of each variable leaked.

• Homomorphically computable distance metric
• sum of squared differences
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Variance of distance metric per CRM

Lemma Let the random variable V be multinomially distributed
with success probabilities p = (p1, . . . , pk) for n trials. Then,

Var
(

k∑
i=1

(Vi − ci)2
)

=
k∑

i=1

[(nCn−4 − n2(n− 1)2)p4
i +

(
6nCn−3 + 2n(n− 1)(4ci − n)

)
p3

i

+
(
7n(n− 1) − n2 − 4cin(2n− 3)(1 + ci)

)
p2

i +
(
n+ 4cin(ci − 1)

)
pi

+
k∑

j=1
i ̸=j

[
− n(2ci − 1)(2cj − 1)pipj + 2n(n− 1)(2cj − 1)p2

i pj

+ 2n(n− 1)(2ci − 1)pip
2
j − 2n(n− 1)(2n− 3)p2

i p
2
j

]]

=⇒ can be used to weight random marginals differently.
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ABCDE: Approximate Bayesian Computation Done
Encrypted

Tying it all together:

• ABC-PMC/SMC

• Homomorphic Secret Sharing with data pooling

• CCRM summary statistic protecting model/prior privacy

• Pooled S(·) computable encrypted from multiple data
owners

• Distance computable encrypted and not learned by
modeller

• Variance of each CRM computable encrypted for weighting
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Selected connections in ABC literature

• Bernton, E., Jacob, P. E., Gerber, M., & Robert, C. P. (2017).
Inference in generative models using the Wasserstein
distance. arXiv:1701.05146.

• Gutmann, M. U., Dutta, R., Kaski, S., & Corander, J. (2017).
Likelihood-free inference via classification. Statistics and
Computing, 1-15.

• Fearnhead, P., & Prangle, D. (2012). Constructing
summary statistics for approximate Bayesian computation:
semi-automatic approximate Bayesian computation.
Journal of the Royal Statistical Society: Series B, 74(3),
419-474.
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Examples
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Toy example

Super simple first example, 8-dimensional multivariate
Normal.

X ∼ N(µ = 0,Σ = I)
µi ∼ N(ηi, σ = 2)

where ηi chosen independently uniformly at random on the
interval [−1, 1] for repeated experiments.

• Simulate n = 1000 observations
• Range of all dimensions taken to be [−4, 4] for
construction of CCRM, without checking true range ofX

• Standard ABC used S(X) = (x̄1, . . . , x̄8)
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Toy example: 8D Normal, marginal quadratic loss
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Toy example: 8D Normal, marginal posterior σ
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Toy example: distance concordance
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Expected quadratic loss

Can understand lowest ABC error achievable without Monte
Carlo error:

E
[
(µ− µ̂)2 |T = t

]
= 1

|At|

∫
At

(
µ−

∫ ∞

−∞
θ P
(
S(x) = S(xobs) | da1, . . . , dat

)
π(dθ)

)2

because for 1-level CRMs:

P
(
S(x) = S(xobs) | da1, . . . , dat

)
=

t∏
k=1

(
n

mk

)
Fvk

(X < ak)mk(1 − Fvk
(X < ak))n−mk

wheremk = #{i : xobs
i < ak}.
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Expected quadratic loss
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g-and-k distribution (Haynes et al. 1997)

Defined via inverse distribution function

F−1(x |A,B, g, k) =

A+B

[
1 + 0.8

1 − exp
(

− gΦ−1(x)
)

1 + exp
(

− gΦ−1(x)
)] (1 + Φ−1(x)2)kΦ−1(x)

Following Allingham et al. (2009) and Fearnhead & Prangle
(2012), take:

• A = 3, B = 1, g = 2, k = 1
2

• simulate n = 10000 observations
• standard ABC uses the order statistics,
S(X) = (x(1), . . . , x(n))
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g-and-k: quadratic loss
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g-and-k: density plots
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g-and-k: density plots
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Tuberculosis Transmission (Tanaka et al. 2006)

Model of transmission of disease,

• ‘birth’ of new infections, rate α
• ‘death’ recovery or mortality of carrier, rate δ
• ‘mutation’ genotype of bacterium mutates within carrier,
rate θ (infinite-alleles assumption)

Xi(t) num infections type i at time t; G(t) num unique
genotypes.

• San Francisco tuberculosis data 1991/2, 473 samples (no
time)

• Fearnhead & Prangle (2012) transform(
α/(α+ δ + θ), δ/(α+ δ + θ)

)
• S(X) =

(
G(tend)/473, 1 −

∑
i(X(tend)/473)2)
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Posterior samples
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These data contain no information on time, so, for k > 0, parameter values .α, δ, θ/ and
.kα, kδ, kθ/ give the same likelihood. We reparameterize to .a, d, θ/ where a=α=.α+δ+θ/ and
d =δ=.α+δ+θ/. The likelihood under this parameterization depends only on a and d. To reflect
prior ignorance of (a,d) we use the prior density π.a, d, θ/∝π.θ/ I.0!d !a/ I.a+d< 1/, where
π.θ/ is the marginal prior for θ that was used in Tanaka et al. (2006). The prior restriction d !a
avoids the need for simulations in which N.t/ = 10 000 is highly unlikely to occur. The other
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Fig. 3. ABC output for the tuberculosis application (every 1000th state is plotted): (a) comparison; (b) semi-
automatic ABC Semi-automatic ABC
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Theory
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Theory (Sam Livingstone, UCL)

Proposition 1:

When d = 1, if ρT (S(x), S(y)) :=
∑T

k=1 ρ(Sk(x), Sk(y)) for some
discrepency ρ : R × R → [0,∞) then as T → ∞

lim
T →∞

ρT (S(x), S(y))
T

a.s.−−→
∫ ∞

−∞
ρ(FX(z), FY (z))dz,

where FX and FY are the empirical cumulative distribution
functions for the data sets x1:n and y1:n respectively. In
particular

1 If ρT (S(x), S(y)) := ∥S(x) − S(y)∥1, then
T−1ρT (S(x), S(y)) a.s.−−→ W1(x1:n, y1:n)

2 If ρT (S(x), S(y)) := ∥S(x) − S(y)∥2
2, then

T−1ρT (S(x), S(y)) a.s.−−→
∫∞

−∞(FX(z) − FY (z))2dz.
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Conclusions

• So far, this …
• Provides encrypted inference whilst preserving model,
prior and data privacy

• Enables pooling of multiple data owners
• Theoretically arbitrary low-dimensional models

• … but this is work-in-progress! Currently in progress:
• Method of ensuring differential privacy
• Encrypted software implementation of this scheme
• Best use of weights
• Fuller understanding of accuracy for CCRM choices
• Data as a service

• Perhaps also useful as a model independent summary
statistic for unencrypted ABC too?

• Questions, comments and discussion welcome!
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• So far, this …
• Provides encrypted inference whilst preserving model,
prior and data privacy

• Enables pooling of multiple data owners
• Theoretically arbitrary low-dimensional models

• … but this is work-in-progress! Currently in progress:
• Method of ensuring differential privacy
• Encrypted software implementation of this scheme
• Best use of weights
• Fuller understanding of accuracy for CCRM choices
• Data as a service

• Perhaps also useful as a model independent summary
statistic for unencrypted ABC too?

• Questions, comments and discussion welcome!

Thank you!
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