mples Theory

Towards Encrypted Inference for Arbitrary Models

Louis J. M. Aslett (louis.aslett@durham.ac.uk) Department of Mathematical Sciences Durham University

Newcastle University Statistics Seminar

9 February 2018

Introduction

Motivation

Security in statistics applications is a growing concern:

- computing in a 'hostile' environment (e.g. cloud computing);
- donation of sensitive/personal data (e.g. medical/genetic studies);
- complex models on constrained devices (e.g. smart watches)
- running confidential algorithms on confidential data (e.g. engineering reliability)

Perspectives on "privacy"

- Differential privacy
 - on outcomes of 'statistical queries'
 - guarantees of privacy for individual observations

Perspectives on "privacy"

- Differential privacy
 - on outcomes of 'statistical queries'
 - guarantees of privacy for individual observations
- Data privacy
 - at rest
 - during fitting
 - data pooling

Perspectives on "privacy"

- Differential privacy
 - on outcomes of 'statistical queries'
 - guarantees of privacy for individual observations
- Data privacy
 - at rest
 - during fitting
 - data pooling
- Model privacy
 - prior distributions
 - model formulation

The perspective for today ...

- **Eve** has a private model, including prior information which may itself be private.
- **Cain** and **Abel** have private data which is relevant to the fitting of Eve's model.

Can Eve fit a model, pooling data from Cain and Abel without observing their raw data and without revealing her model and prior information? Abel also doesn't trust Cain ...

$$\begin{array}{c} \pi(\cdot \mid \psi) \\ \pi(\psi) \end{array}$$

$$\{\mathbf{x}_{i} = (x_{i1}, \dots, x_{id})\}_{i=1}^{n_{1}}$$
$$\{\mathbf{x}_{i} = (x_{i1}, \dots, x_{id})\}_{i=n_{1}+1}^{N}$$

Examples Theory

Cryptography the solution?

Encryption can provide security guarantees ...

 ${\rm Dec}(k_s,c)=m$

... but is typically 'brittle'.

Cryptography the solution?

Encryption can provide security guarantees ...

... but is typically 'brittle'.

Arbitrary addition and multiplication is possible with **fully homomorphic encryption** schemes (Gentry, 2009).

$$\begin{array}{c|cccc} m_1 & m_2 & \xrightarrow{+} & m_1 + m_2 \\ \hline & & & & & \uparrow \\ \downarrow & & & & \uparrow \\ c_1 & c_2 & \xrightarrow{\oplus} & c_1 \oplus c_2 \end{array}$$

$$\frac{\pi(\cdot \,|\, \psi)}{\pi(\psi)}$$

$$\{\mathbf{x}_{i} = (x_{i1}, \dots, x_{id})\}_{i=1}^{n_{1}}$$
$$\{\mathbf{x}_{i} = (x_{i1}, \dots, x_{id})\}_{i=n_{1}+1}^{N}$$

$$\frac{\pi(\cdot \mid \psi)}{\pi(\psi)}$$

$$\{\mathbf{x}_{i} = (x_{i1}, \dots, x_{id})\}_{i=1}^{n_{1}}$$

$$\{\mathbf{x}_{i} = (x_{i1}, \dots, x_{id})\}_{i=n_{1}+1}^{N}$$

$$\downarrow$$

$$\mathbf{x}_{i}^{\star} = \operatorname{Enc}(k_{p}, \mathbf{x}_{i})$$

$$\pi(\cdot | \psi)$$

$$\pi(\psi)$$

$$\pi(\psi)$$

$$\pi(\psi | X) \propto$$

$$\operatorname{Dec} \left[k_{s}, \prod_{i=1}^{N} \pi(\mathbf{x}_{i}^{\star} | \operatorname{Enc}(k_{p}, \psi)) \times$$

$$\operatorname{Enc}(k_{p}, \pi(\psi)) \right]$$

$$\left\{ \mathbf{x}_{i} = (x_{i1}, \dots, x_{id}) \right\}_{i=n_{1}+1}^{n_{1}}$$

$$\left\{ \mathbf{x}_{i} = (x_{i1}, \dots, x_{id}) \right\}_{i=n_{1}+1}^{n_{1}}$$

Introduction

imples Theo

Introduction

imples Theo

imples Theor

amples Theo

amples Theo

Introduction

amples Theo

Introduction

imples Theor

amples Theor

Eve, Cain & Abel

 $\pi(\cdot \mid \psi)$ $\{\mathbf{x}_i = (x_{i1}, \dots, x_{id})\}_{i=1}^{n_1}$ $\pi(\psi)$ $\{\mathbf{x}_i = (x_{i1}, \dots, x_{id})\}_{i=n_1+1}^N$ $\pi(\psi \mid X) \propto$ $\operatorname{Dec}\left[k_{s},\prod_{i=1}^{N}\pi(\mathbf{x}_{i}^{\star}|\operatorname{Enc}(k_{p},\psi))\times\right.$ $\mathbf{x}_i^{\star} = \operatorname{Enc}(k_n, \mathbf{x}_i)$ $\operatorname{Enc}(k_p, \pi(\psi))$ X Likelihood restricted to low **x** Who holds secret key? degree polynomials X Can only handle very small N due to multiplicative depth ✗ MAP/posterior? How? MCMC? 9/38

- **1** Sample $\psi_j \sim \pi(\psi), \ j \in \{1, \ldots, m\}$
- **2** For each ψ_j , simulate a dataset Y_j from $\pi(\cdot | \psi_j)$ of the same size, N, as X.
- **3** Accept ψ_j if $d(S(X), S(Y_j)) < \varepsilon$.

Where $S(\cdot)$ is some (vector) of summary statistics; $d(\cdot, \cdot)$ is a distance metric; and ε is a user defined threshold.

When $S(\cdot)$ is sufficient and $\varepsilon \to 0$, this procedure will converge to the usual Bayesian posterior.

- **1** Sample $\psi_j \sim \pi(\psi), \ j \in \{1, \ldots, m\}$
- 2 For each ψ_j , simulate a dataset Y_j from $\pi(\cdot | \psi_j)$ of the same size, N, as X.
- **3** Accept ψ_j if $d(S(X), S(Y_j)) < \varepsilon$.

Where $S(\cdot)$ is some (vector) of summary statistics; $d(\cdot, \cdot)$ is a distance metric; and ε is a user defined threshold.

When $S(\cdot)$ is sufficient and $\varepsilon \to 0$, this procedure will converge to the usual Bayesian posterior.

Benefit: Eve can do steps 1 & 2 and encrypt her simulated data, eliminating need for function privacy.

- **1** Sample $\psi_j \sim \pi(\psi), \ j \in \{1, \ldots, m\}$
- 2 For each ψ_j , simulate a dataset Y_j from $\pi(\cdot | \psi_j)$ of the same size, N, as X.
- **3** Accept ψ_j if $d(S(X), S(Y_j)) < \varepsilon$.

Where $S(\cdot)$ is some (vector) of summary statistics; $d(\cdot, \cdot)$ is a distance metric; and ε is a user defined threshold.

When $S(\cdot)$ is sufficient and $\varepsilon \to 0$, this procedure will converge to the usual Bayesian posterior.

Benefit: Eve can do steps 1 & 2 and encrypt her simulated data, eliminating need for function privacy.

Problems: $d(\cdot, \cdot)$ can only be low degree polynomials; Must compute $S(\cdot)$ secretly for Cain and Abel's pooled data; Naïve ABC performs poorly & choosing ε blindfolded.

1 Eve samples $\psi_j \sim \pi(\psi)$, $j \in \{1, ..., m\}$; simulates datasets Y_j of size N from $\pi(\cdot | \psi_j)$; and computes $S(Y_j)$.

- **1** Eve samples $\psi_j \sim \pi(\psi)$, $j \in \{1, ..., m\}$; simulates datasets Y_j of size N from $\pi(\cdot | \psi_j)$; and computes $S(Y_j)$.
- 2 Eve computes HSS shares $S^{\star p}(Y_j)$, $p \in \{1, \ldots, P+1\}$;
 - send $S^{\star p}(Y_j)$ to data owner p
 - retain $S^{\star P+1}(Y_j)$

- Eve samples $\psi_j \sim \pi(\psi), \ j \in \{1, \dots, m\}$; simulates datasets Y_j of size N from $\pi(\cdot | \psi_j)$; and computes $S(Y_j)$.
- 2 Eve computes HSS shares $S^{\star p}(Y_j)$, $p \in \{1, \ldots, P+1\}$;
 - send $S^{\star p}(Y_j)$ to data owner p
 - retain $S^{\star P+1}(Y_j)$
- **3** Data owners $k \in \{1, ..., P\}$ create HSS shares $S^{\star p}(X_k)$, $p \in \{1, ..., P + 1\}$
 - send $S^{\star p}(X_k)$ to data owner p (retaining when p = k)
 - send $S^{\star P+1}(X_k)$ to Eve

- Eve samples $\psi_j \sim \pi(\psi), \ j \in \{1, \dots, m\}$; simulates datasets Y_j of size N from $\pi(\cdot | \psi_j)$; and computes $S(Y_j)$.
- 2 Eve computes HSS shares $S^{\star p}(Y_j)$, $p \in \{1, \ldots, P+1\}$;
 - send $S^{\star p}(Y_j)$ to data owner p
 - retain $S^{\star P+1}(Y_j)$
- **3** Data owners $k \in \{1, ..., P\}$ create HSS shares $S^{\star p}(X_k)$, $p \in \{1, ..., P + 1\}$
 - send $S^{\star p}(X_k)$ to data owner p (retaining when p = k)
 - send $S^{\star P+1}(X_k)$ to Eve
- **4** All compute $S^{\star p}(X) = \tilde{S}(\bigcup_k S^{\star p}(X_k))$, where $\tilde{S}(\cdot)$ is a homomorphically computable pooling function.

- Eve samples $\psi_j \sim \pi(\psi), \ j \in \{1, \dots, m\}$; simulates datasets Y_j of size N from $\pi(\cdot | \psi_j)$; and computes $S(Y_j)$.
- 2 Eve computes HSS shares $S^{\star p}(Y_j)$, $p \in \{1, \ldots, P+1\}$;
 - send $S^{\star p}(Y_j)$ to data owner p
 - retain $S^{\star P+1}(Y_j)$
- **3** Data owners $k \in \{1, ..., P\}$ create HSS shares $S^{\star p}(X_k)$, $p \in \{1, ..., P + 1\}$
 - send $S^{\star p}(X_k)$ to data owner p (retaining when p = k)
 - send $S^{\star P+1}(X_k)$ to Eve
- **4** All compute $S^{\star p}(X) = \tilde{S}(\bigcup_k S^{\star p}(X_k))$, where $\tilde{S}(\cdot)$ is a homomorphically computable pooling function.
- **6** All compute $d_j^{\star p} = d(S^{\star p}(X), S^{\star p}(Y_j))$, where $d(\cdot)$ is a **homomorphically computable distance metric**.

6 All send their shares, $d_j^{\star p}$, to a randomly chosen data owner $k \in 1, \ldots, P$

- 6 All send their shares, $d_j^{\star p}$, to a randomly chosen data owner $k \in 1, \ldots, P$
- 7 Data owner k reconstructs $d_j = \text{Dec}(d_j^{\star 1}, \dots, d_j^{\star P+1})$

- 6 All send their shares, $d_j^{\star p}$, to a randomly chosen data owner $k \in 1, \dots, P$
- **7** Data owner k reconstructs $d_j = \text{Dec}(d_j^{\star 1}, \dots, d_j^{\star P+1})$
- 8 Data owner k sends to Eve a list of those indices j such that d_j < ε.</p>

_

_

_

Naïve encrypted ABC (III) – in pictures

$$\pi(\psi) \longrightarrow \{\psi_j\}_{j=1}^{m} \qquad X_1 = \{\mathbf{x}_i = (x_{i1}, \dots, x_{id})\}_{i=1}^{n_1} \qquad X_2 = \{\mathbf{x}_i = (x_{i1}, \dots, x_{id})\}_{i=n_1+1}^{n_1} \qquad X_2 = \{\mathbf{x}_i = (x_{i1}, \dots, x_{id})\}_{i=n_1+1}^{n_2} \qquad X_2 = \{\mathbf{x}_i = (x_{i1}, \dots, x_{id})\}_{i=n_1$$

Points to note

- Samples ψ_j are never seen by Cain and Abel
- Eve learns only an accept/reject
 - Final distances between summary statistics decrypted by Cain or Abel
- Cain and Abel do not learn about each other's data
 - only see composite distance between pooled summary stats and Eve's simulation
 - can make distances information theoretically secure by adding random values generated by Cain, Abel and Eve
- **BUT**, Cain and Abel do have to know $S(\cdot)$, which in most ABC settings is model dependent \implies risk to Eve
Obstacles to cryptographic ABC

- Homomorphically computable pooling of summary statistics
- Summary statistics that don't reveal model
- Homomorphically computable distance metric
- Blindfold selection of ε

Obstacles to cryptographic ABC

- Homomorphically computable pooling of summary statistics
- Summary statistics that don't reveal model
- Homomorphically computable distance metric
- Blindfold selection of ε
 - Propose using ABC-PMC/SMC, with distance chosen to retain $\alpha\%$ of samples instead. Eve then uses accepted ψ_j on step t to propose step t + 1 and repeat algorithm.
 - Standard idea details omited.

Cryptographically Secure Inference

Collection of Coarse Random Marginals (CCRM)

Construct in the manner of a decision forest:

- Grow T trees, each to predetermined fixed depth L
- Choose variable $v \in \{1, \dots, d\}$ uniformly at random
- Each split point uniformly at random in range of $x_{\cdot v}$
 - Thus Cain and Abel must provide range of each variable in the data, though this range need not be tight
 - e.g. release $(\min_i x_{iv} + \eta, \max_i x_{iv} + \eta)$ for $\eta \sim N(0, \sigma^2)$ with σ^2 chosen not to exclude too large a range
- $\mathbf{s} = S(\cdot)$ is then the counts of observations in each terminal leaf
 - vector of $T2^L$ counts
 - + $\tilde{S}(\cdot)$ is then simply vector addition
- Define

$$d(S(X), S(Y_j)) = \sum_{i=1}^{T2^L} \left(s_i^X - s_i^{Y_j} \right)^2$$

CCRM solutions

- Homomorphically computable pooling of summary statistics
 - simple vector addition
- Summary statistics that don't reveal model
 - CCRM is completely random, grown the same way for all models and data sets. Only weak information about range of each variable leaked.
- Homomorphically computable distance metric
 - sum of squared differences

Examples Theory

Variance of distance metric per CRM

Lemma Let the random variable V be multinomially distributed with success probabilities $p = (p_1, ..., p_k)$ for n trials. Then,

$$\begin{aligned} \operatorname{Var}\left(\sum_{i=1}^{k} (V_{i} - c_{i})^{2}\right) \\ &= \sum_{i=1}^{k} \left[\left({}^{n}C_{n-4} - n^{2}(n-1)^{2}\right)p_{i}^{4} + \left(6^{n}C_{n-3} + 2n(n-1)(4c_{i} - n)\right)p_{i}^{3} \right. \\ &+ \left(7n(n-1) - n^{2} - 4c_{i}n(2n-3)(1+c_{i})\right)p_{i}^{2} + \left(n + 4c_{i}n(c_{i} - 1)\right)p_{i} \right. \\ &+ \left. \sum_{\substack{j=1\\i\neq j}}^{k} \left[-n(2c_{i} - 1)(2c_{j} - 1)p_{i}p_{j} + 2n(n-1)(2c_{j} - 1)p_{i}^{2}p_{j} \right] \right] \end{aligned}$$

$$+ 2n(n-1)(2c_i-1)p_ip_j^2 - 2n(n-1)(2n-3)p_i^2p_j^2 \bigg] \bigg]$$

 \implies can be used to weight random marginals differently.

ABCDE: Approximate Bayesian Computation Done Encrypted

Tying it all together:

- ABC-PMC/SMC
- Homomorphic Secret Sharing with data pooling
- CCRM summary statistic protecting model/prior privacy
- Pooled $S(\cdot)$ computable encrypted from multiple data owners
- Distance computable encrypted and not learned by modeller
- Variance of each CRM computable encrypted for weighting

Selected connections in ABC literature

- Bernton, E., Jacob, P. E., Gerber, M., & Robert, C. P. (2017). Inference in generative models using the Wasserstein distance. *arXiv:1701.05146*.
- Gutmann, M. U., Dutta, R., Kaski, S., & Corander, J. (2017). Likelihood-free inference via classification. *Statistics and Computing*, 1-15.
- Fearnhead, P., & Prangle, D. (2012). Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation. *Journal of the Royal Statistical Society: Series B*, 74(**3**), 419-474.

Examples

Toy example

Super simple first example, 8-dimensional multivariate Normal.

$$X \sim \mathbf{N}(\boldsymbol{\mu} = \mathbf{0}, \boldsymbol{\Sigma} = I)$$
$$\mu_i \sim \mathbf{N}(\eta_i, \sigma = 2)$$

where η_i chosen independently uniformly at random on the interval [-1, 1] for repeated experiments.

- Simulate n = 1000 observations
- Range of all dimensions taken to be [-4, 4] for construction of CCRM, without checking true range of *X*
- Standard ABC used $S(X) = (\bar{x}_1, \dots, \bar{x}_8)$

Toy example: 8D Normal, marginal quadratic loss

Toy example: 8D Normal, marginal quadratic loss

Toy example: 8D Normal, marginal posterior σ

Toy example: 8D Normal, marginal posterior σ

Examples T

Toy example: distance concordance

T = 20

Toy example: distance concordance

Toy example: distance concordance

$$T = 1000$$

Theory

Expected quadratic loss

Can understand lowest ABC error achievable without Monte Carlo error:

$$\mathbb{E}\left[(\mu - \hat{\mu})^2 \,|\, T = t\right]$$

= $\frac{1}{|\mathcal{A}^t|} \int_{\mathcal{A}^t} \left(\mu - \int_{-\infty}^{\infty} \theta \,\mathbb{P}\left(S(x) = S(x^{\text{obs}}) \,|\, da_1, \dots, da_t\right) \,\pi(d\theta)\right)^2$

because for 1-level CRMs:

$$\mathbb{P}\left(S(x) = S(x^{\text{obs}}) \mid da_1, \dots, da_t\right)$$
$$= \prod_{k=1}^t \binom{n}{m_k} F_{v_k}(X < a_k)^{m_k} (1 - F_{v_k}(X < a_k))^{n-m_k}$$

where
$$m_k = \#\{i : x_i^{\text{obs}} < a_k\}.$$

Expected quadratic loss

g-and-k distribution (Haynes et al. 1997)

Defined via inverse distribution function

$$F^{-1}(x \mid A, B, g, k) =$$

$$A + B \left[1 + 0.8 \frac{1 - \exp\left(-g\Phi^{-1}(x)\right)}{1 + \exp\left(-g\Phi^{-1}(x)\right)} \right] \left(1 + \Phi^{-1}(x)^2\right)^k \Phi^{-1}(x)$$

Following Allingham et al. (2009) and Fearnhead & Prangle (2012), take:

•
$$A = 3, B = 1, g = 2, k = \frac{1}{2}$$

- simulate n = 10000 observations
- standard ABC uses the order statistics, $S(X) = (x_{(1)}, \dots, x_{(n)})$

g-and-k: quadratic loss

g-and-k: quadratic loss

g-and-k: density plots

g-and-k: density plots

Tuberculosis Transmission (Tanaka et al. 2006)

Model of transmission of disease,

- 'birth' of new infections, rate α
- 'death' recovery or mortality of carrier, rate δ
- 'mutation' genotype of bacterium mutates within carrier, rate θ (infinite-alleles assumption)

 $X_i(t)$ num infections type i at time t; G(t) num unique genotypes.

- San Francisco tuberculosis data 1991/2, 473 samples (no time)
- Fearnhead & Prangle (2012) transform $(\alpha/(\alpha + \delta + \theta), \delta/(\alpha + \delta + \theta))$
- $S(X) = (G(t_{end})/473, 1 \sum_i (X(t_{end})/473)^2)$

Posterior samples

Semi-automatic ABC

Posterior samples

Semi-automatic ABC
Posterior samples

Semi-automatic ABC

Posterior samples

Semi-automatic ABC

Theory

Theory (Sam Livingstone, UCL)

Proposition 1:

When d = 1, if $\rho_T(S(x), S(y)) := \sum_{k=1}^T \rho(S_k(x), S_k(y))$ for some discrepency $\rho : \mathbb{R} \times \mathbb{R} \to [0, \infty)$ then as $T \to \infty$

$$\lim_{T \to \infty} \frac{\rho_T(S(x), S(y))}{T} \xrightarrow{a.s.} \int_{-\infty}^{\infty} \rho(F_X(z), F_Y(z)) dz,$$

where F_X and F_Y are the empirical cumulative distribution functions for the data sets $x_{1:n}$ and $y_{1:n}$ respectively. In particular

1 If
$$\rho_T(S(x), S(y)) := ||S(x) - S(y)||_1$$
, then
 $T^{-1}\rho_T(S(x), S(y)) \xrightarrow{a.s.} W_1(x_{1:n}, y_{1:n})$
2 If $\rho_T(S(x), S(y)) := ||S(x) - S(y)||_2^2$, then
 $T^{-1}\rho_T(S(x), S(y)) \xrightarrow{a.s.} \int_{-\infty}^{\infty} (F_X(z) - F_Y(z))^2 dz.$

Conclusions

- So far, this ...
 - Provides encrypted inference whilst preserving model, prior and data privacy
 - Enables pooling of multiple data owners
 - Theoretically arbitrary low-dimensional models
- ... but this is work-in-progress! Currently in progress:
 - Method of ensuring differential privacy
 - Encrypted software implementation of this scheme
 - · Best use of weights
 - Fuller understanding of accuracy for CCRM choices
 - Data as a service
- Perhaps also useful as a model independent summary statistic for unencrypted ABC too?
- Questions, comments and discussion welcome!

Conclusions

- So far, this ...
 - Provides encrypted inference whilst preserving model, prior and data privacy
 - Enables pooling of multiple data owners
 - Theoretically arbitrary low-dimensional models
- ... but this is work-in-progress! Currently in progress:
 - Method of ensuring differential privacy
 - Encrypted software implementation of this scheme
 - Best use of weights
 - Fuller understanding of accuracy for CCRM choices
 - Data as a service
- Perhaps also useful as a model independent summary statistic for unencrypted ABC too?
- Questions, comments and discussion welcome!

Thank you!