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Motivation

Sampling from probability distributions — why?

Monte Carlo essentially avoids the quandry of choosing an
accurate but intractable model versus a simple but computable
one.
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Motivation

Sampling from probability distributions — why?

Monte Carlo essentially avoids the quandry of choosing an

accurate but intractable model versus a simple but computable
one.

May want to answer:

 Probabilistic questions
« simulate physical random processes
 concerned with some corresponding random outcome
- may be inherent or perceived randomness
« eg simulation of shuttle launch
e Deterministic questions
« most often, boils down to computation of high dimensional
integrals
+ use ‘experimental’ methods to answer ‘theoretical’
question
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Motivation

Bayesian inference (recall Georgios Karagiannis’ talk)

e Data: t = {t1,...,tn}

¢ Model: ¢ is the realisation of a random vector 7" having
probability density 77| g (- | 1), where 7 is an unknown
parameter. 7p| g (t|-) is the likelihood.

« Prior: all knowledge about ) which is not contained in ¢t is
expressed via prior density 7y (1)).
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¢ Model: ¢ is the realisation of a random vector 7" having
probability density 77| g (- | 1), where 7 is an unknown
parameter. 7p| g (t|-) is the likelihood.

« Prior: all knowledge about ) which is not contained in ¢t is
expressed via prior density 7y (1)).

« Posterior: Bayes’ Theorem enables us to rationally update
the prior to our posterior belief in light of the new evidence
(data).

Bayes’ Theorem
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the prior to our posterior belief in light of the new evidence
(data).
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- _ mppu(t|Y) Te(y) - -
vir(¥[t) = Tamr e 9) 7u(@0) 71w (t|¥) Te(¥)
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Motivation

Everything is about expectations ...

Recall, for a random variable X € 2 having probability density
(),

E[f(X)] = /Q f@)r(de) 2 p
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Motivation

Everything is about expectations ...

Recall, for a random variable X € 2 having probability density
(),

E[f(X)] = /Q f@)r(de) 2 p

Pretty much all statements of probability can be phrased in
terms of expectations.

* X €R,

PIX <a) = [ w(d) = [ Ty (@)7(dr) = Bl (X))

— 00 —00

5/37



Motivation

Everything is about expectations ...

Recall, for a random variable X € 2 having probability density
(),

E[f(X)] = /Q f@)r(de) 2 p

Pretty much all statements of probability can be phrased in
terms of expectations.

* X €R,
POX<a)= [ nde) = [~ I swn)(@)n(de) = Bl -so(X))
e XeQ ACQ,

MXem:%fu@:AL@mm@:mmuﬂ

ie for statements of probability define f(x) := I4(x)
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Motivation

Bayesian inference again

¢ May want samples directly from the posterior;
- marginal kernel density estimates;
e posterior predictive simulation;
. etc
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Motivation

Bayesian inference again

¢ May want samples directly from the posterior;
- marginal kernel density estimates;
e posterior predictive simulation;
. etc

« Or may want to answer question about a probability under
the posterior

P € Alt) = [ (dv|t)

o Ta()m(t] ) w(dy)
Jo m(E] ) (@)

_/HA (di | £)
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Motivation

So ... just do numerical integration?

Midpoint Riemann integral in 1-dim using n evaulations:

[ st = [ g~ ""0 3 gt

where
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Motivation

So

.. just do numerical integration?

Midpoint Riemann integral in 1-dim using n evaulations:

[ st = [ g~ ""0 3 gt

+b—a<. 1)
T;=a i — =
’ n 2

It is easy to show the error is:
b
L

Clearly, & (2)| is fixed by the problem, so we
achieve de51red accuracy by controlling n 2.

where

n

<0 o 1)
- 24712 a<z<b
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So ... just do numerical integration?

« error in midpoint Riemann integral in 1-dim:

O(n?)
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Motivation

So ... just do numerical integration?

« error in midpoint Riemann integral in 1-dim:
O(n?)
but
e error in midpoint Riemann integral in d-dim:
O(n=2/4)

so-called ‘curse of dimensionality’
e error in Monte Carlo integration:

O (n—1/2)
ie independent of dimension

Simpson’s improves this to @ (n~*/%), but in general
Bakhvalov’s Theorem bounds all possible quadriture methods

by O(n~"/?) ... quadriture can’t beat curse of dimensionality. -



Motivation

Method

Monte Carlo d-dim
— Riemann 2-dim
Riemann 6-dim

Order of error

N

100 1000 10000
n

Note: this is the order of error, not absolute error!
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Motivation

Monte Carlo to the rescue?

Monte Carlo integration in d-dim using » evaulations:
A
p2 [ fwm(dn) ~

where z; ~ 7(-)
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Monte Carlo to the rescue?

Monte Carlo integration in d-dim using » evaulations:

u/f %

where z; ~ 7(-)

(i) = i1

gk
~

The root mean square error is:

1 & 2 o
E [(/f(fﬁ)ﬂ(d@—n;f(ﬂfi)) ] =/

where o = Var, (f(X)).

Again, o is (mostly) inherent to the problem, so we achieve
desired accuracy by controlling n~1/2
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Motivation

Monte Carlo to the rescue?

Monte Carlo integration in d-dim using » evaulations:

u/f %

where z; ~ 7(-)

(i) = i1

gk
~

The root mean square error is:

1 & 2 o
E [(/f(fﬁ)ﬂ(d@—n;f(ﬂfi)) ] =/

where o = Var, (f(X)).

Again, o is (mostly) inherent to the problem, so we achieve
desired accuracy by controlling n~1/2

Recall we can set f(z) := [4(x) to compute probabilities. 1057



Motivation

Monte Carlo — the practicality

Remarkably:

« No dependence on d.
¢ No dependence on smoothness of integrand.

* Jm can itself be directly estimated from the samples
drawn.
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Motivation

Monte Carlo — the practicality

Remarkably:

« No dependence on d.

¢ No dependence on smoothness of integrand.

. \;’ﬁ can itself be directly estimated from the samples
drawn.

but ... the crux of the last slide was:
“where z; ~ 7(-)”

Methodological research in Monte Carlo is largely preocupied
with how to achieve this for complex probability distributions.
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Motivation

Monte Carlo — achieving desired accuracy

A simple application of Chebyshev’s inequality allows us to
bound how certain we are in a fully quantified way,

Fe [(A )2]
P(lf—pl>e)< 0T 9
(I =nlze) =< g2 ne?
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Motivation

Monte Carlo — achieving desired accuracy

A simple application of Chebyshev’s inequality allows us to
bound how certain we are in a fully quantified way,

Fe [(A )2]
P(lf—pl>e)< 0T 9
(I =nlze) =< g2 ne?

Or indeed, invoking the iid central limit theorem we can
asymptotically state,

p(ETE <L) n2 gz
o172

and so form confidence intervals for i based on large n
samples.

12/37



Simple MC

Simple MC
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Simple MC

The setting

Almost all Monte Carlo procedures start from the assumption
that we have available an unlimited stream of independent
uniformly distributed values, typically on the interval [0, 1].

We now want to study how to convert a stream
u; ~ Unif(0, 1)

into a stream
zj~7()

where z; is generated by some algorithm depending on one or
more u;. In more advanced methods (see MCMC), z; may also
dependon z;_; orevenzy,...,x;_i.
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Simple MC
Inverse sampling

Let F(z) := P(X < z) be the cumulative distribution function
for our target probability density function 7 (-).

Inverse Sampling
@ Sample U ~ Unif(0, 1).
® Set X = F~1(U).
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Simple MC
Inverse sampling

Let F(z) := P(X < z) be the cumulative distribution function
for our target probability density function 7 (-).

Inverse Sampling
@ Sample U ~ Unif(0, 1).
® Set X = F~1(U).
Why is X ~ 7(-)?

To avoid problems with discrete distributions, we must define £

F~Y(u) =inf{z : F(z) > u}, Vu € [0,1]

15/37



Simple MC
Rejection sampling

Seek a density 7(-) we can sample from and such that
m(x) < ct(z) Vo

where ¢ < co. 7(+) and 7(-) need not be normalised.

Rejection Sampling

@ Sample Y ~ 7(-) and U ~ Unif(0, 1).

O IfU < m(y)) return Y, else return to 1.
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Simple MC
Rejection sampling

Seek a density 7(-) we can sample from and such that
m(x) < ct(z) Vo

where ¢ < co. 7(+) and 7(-) need not be normalised.
Rejection Sampling

@ Sample Y ~ 7(-) and U ~ Unif(0, 1).

O IfU < m(y)) return Y, else return to 1.

This is not perfectly efficient as we must iterate 1 & 2 a random
number of times until acceptance, with s

P(accept) = —

16/37



Simple MC

Rejection sampling — caution, a low-d method

Consider a multi-variate Normal distribution centered at 0,
~1/2 l 1q1
m(x) = det(27X) exp | —ox Y¥x

Say want to produce samples for target where

1 09 --- 09

0.9 1 --- 09
E=1 . .. .| =QTAQ

09 09 --- 1
using a proposal 7(-) where ¥ = o1.
If o < max{\;}, ¢ = 0.

¢ minimal for 0 = max{\;}.
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Motivation Simple MC MCMC In Practi
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Simple MC
Rejection sampling — demo

Shiny demo for rejection sampling with:
m(z) o< (z — 5)° cos (x_1/4>

and

Thus,
c~49 and P(accept)~ 0.204

19/37



Simple MC
Importance sampling (I)

If we have a probability density 7(-) which is ‘close’ to 7 (-),
then we can produce a weighted set of samples. s
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Importance sampling (I)

If we have a probability density 7(-) which is ‘close’ to 7 (-),
then we can produce a weighted set of samples. s

Importance Sampling
@ Sample X ~ 7(+)

® Sample is x; = X, with weight w; = Zg;
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Simple MC
Importance sampling (I)

If we have a probability density 7(-) which is ‘close’ to 7 (-),
then we can produce a weighted set of samples. s

Importance Sampling

@ Sample X ~ 7(+)

w(X)

® Sample is x; = X, with weight w; = X

~

Monte Carlo estimator is slightly modified to account for

weights:
p2 [ @) ~—szfxl Y
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Simple MC
Importance sampling (I)

If we have a probability density 7(-) which is ‘close’ to 7 (-),
then we can produce a weighted set of samples. s

Importance Sampling

@ Sample X ~ 7(+)

w(X)

® Sample is x; = X, with weight w; = X

~

Monte Carlo estimator is slightly modified to account for
weights:
p2 [ @) ~—szfxl ey

Standard Importance Sampling Properties

>
=
—~
8
~
|
—~

NN
E[g] = p, Var(p) = J—; where o7 = / 7 z) = ui(@)) dx
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Importance sampling (II)

Consequently, can show optimal proposal for importance
sampling is:
|f ()| (x)

Topt = 5 ) ()
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Importance sampling (II)

Consequently, can show optimal proposal for importance
sampling is:
. |f ()| (x)
T(X)opt = ———~+———
Wort = 117 @)r(da)

Hence, importance sampling shows how to beat naive Monte
Carlo when estimating expectations of non-identity
functionals — in practice, we can never compute the optimal

().
Can still provide a nice guide ... s
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Simple MC

Importance sampling — unnormalised 7(+)

We can still perform importance sampling if 7(-) and = (-) are
only known up to a normalising constant.

Algorithm for sampling is unchanged, but the self-normalised
importance sampling estimate becomes:

/f(x)w(dx) ~ >y flxi)w;

n
i=1 Wi
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Simple MC

Importance sampling — unnormalised 7(+)

We can still perform importance sampling if 7(-) and = (-) are
only known up to a normalising constant.

Algorithm for sampling is unchanged, but the self-normalised
importance sampling estimate becomes:

/f(x)w(dx) ~ >y flxi)w;

n
i=1 Wi

Self-normalised Importance Sampling Properties
R Var(W) — Cov(W, W f(X
i) = -+ BV 0Y) = CovW, W 00)

Var(i) m Y w(f(ai) — 4> and 7 (@)ope o |f(@) — pl(@)

=1

+0(n™?)

22/37



Simple MC

Importance sampling — simple diagnostic

Equate variance of importance sampling estimate to Monte
Carlo variance for a fixed sample size n.:

[\

Var <Z?1nf(xi)wi> _7
i=1 Wi Ne
Var (S0 f(@i)wi) _ o?
(7 wi)? e
o2y w? o
(S wi)® e
nw?
— ne = jQ
w

 balanced weights are desirable.
 small n, = diagnose a problem with IS
* large n. # all is ok with IS
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MCMC
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MCMC

Markov Chain Monte Carlo

« Standard Monte Carlo methods indeed have the nice
O(n~1/?) convergence rates
¢ no dependence on dimension d

« Constant in the error term still depends on dimension!
¢ no completely free lunch

« But there are methods which control the error term better
than standard Monte Carlo

« MCMC, introduced in 1953, constructs a Markov Chain
whose stationary distribution is the target distribution of
interest, 7(-).
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)Y (@ (¢
Markov Chains

Saw Markov Chains in an imprecise probability context
yesterday morning (Gert de Cooman’s talk).

Recall, a process (X1, Xs,...) is a continuous state space,
discrete time Markov Chain if

P(Xt S A’Xl =21,..., X1 = l‘t,1) = P(Xt S A|Xt,1 = Ct?t,l)
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MCMC

Markov Chains

Saw Markov Chains in an imprecise probability context
yesterday morning (Gert de Cooman’s talk).

Recall, a process (X1, Xs,...) is a continuous state space,
discrete time Markov Chain if
P(Xt cA ’ Xi=z,...,. X1 = l‘t,1) = P(Xt cA | Xy 1= Ct?t,l)

The transition probabilities from a current state are defined by
a kernel function K (z, -), such that,

P(X; € A| X1 = 21) = /AK(xt,l,dy) 2 K(zy 1, A)

Under certain conditions, these chains will have a stationary
distribution. We are interested in constucting Markov Chains
with the stationary distribution we want to target, ie

| (@)K (,9) = =(0)

26/37



MCMC

Diving straight in ...

There is a rich and interesting theory of Markov Chains, but
we’ll fast-forward to the action for today.

27/37



MCMC

Diving straight in ...

Metropolis-Hastings is a method to algorithmically construct
K (z,-) such that = (-) will be stationary distribution.
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MCMC

Diving straight in ...

Metropolis-Hastings is a method to algorithmically construct
K (z,-) such that = (-) will be stationary distribution.

Metropolis-Hastings

Specify a target, 7 (-), proposal, ¢(- | z), and starting point z;.
To sample the Markov Chain, repeat:

©® Sample z* ~ g(- | z4-1)

® Compute

a(z* |z¢—1) = min {1,

m(2*) g(x-1 | 27) }

m(zt-1) g(2* [ 24-1)

® Sample u ~ Unif(0, 1). Set,

z* ifu<alz*|xi—q)
Tt — .
ri—1 Otherwise

28/37



MCMC

Metropolis-Hastings — common proposals

¢ Random-walk MH: choose some spherically symmetric
distribution ¢(-) and define

q(z*|x) =x + ¢, wheree ~ g(+)

e the spherical symmetry means acceptance probability
simplifies: sl

oz(x*xt_l):min{l, (@) }

W("Etfl)

« often, g(-) is zero-mean multivariate Normal
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Metropolis-Hastings — common proposals

¢ Random-walk MH: choose some spherically symmetric
distribution ¢(-) and define

q(z*|x) =x + ¢, wheree ~ g(+)

e the spherical symmetry means acceptance probability
simplifies: sl

oz(x*xt_l):min{l, (@) }

W("Etfl)

« often, g(-) is zero-mean multivariate Normal
+ Independent MH: any choice ¢(z* | z) = g(z*), where the
proposal does not depend on the current state.
« generally not a good choice, easy to construct non-ergodic
chains

29/37



MCMC
Convergence results

We use the same estimator as standard Monte Carlo,

ué/f(x)ﬂ :LEH: ) £ fi

where now z; are MCMC draws.
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MCMC
Convergence results

We use the same estimator as standard Monte Carlo,

p2 [ ) iz Ny

where now z; are MCMC draws.

However, we no longer have iid samples from = (-), so standard
Monte Carlo convergence results do not apply. Under some
mild assumptions, we can state similar results for MCMC:

n—o0

Vi — p) == N(0,0%)

where

0?2 = Var(f(X;)) + 2 i Cov(f(X1), f(X3))
=2

30/37



MCMC

Estimating the variance

It is hard to estimate o2 in the MCMC setting, but essential to
be able to quantify accuracy of estimates.

+ Simple option: always examine ‘autocorrelation’ plots.
These will alert you to situations where the infinite sum is
contributing substantially to the variance in your estimate.

 Better option: use methods such as batch means to
estimate ¢ from the Markov Chain output. See mcmcse R
package for easy functions.
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Choosing a proposal

« Counter-intuitively, high acceptance rates in MCMC are a
bad thing!
« strongly correlated draws reduce the efficiency of the
estimator by inflating the variance
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estimator by inflating the variance
 But, need to move enough to explore the target
¢ long range jumps which reduce correlation have very low
acceptance rates
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MCMC

Choosing a proposal

« Counter-intuitively, high acceptance rates in MCMC are a
bad thing!
« strongly correlated draws reduce the efficiency of the
estimator by inflating the variance
 But, need to move enough to explore the target
¢ long range jumps which reduce correlation have very low
acceptance rates
 Need to balance these concerns
« a famous result shows that in the limit as d — oo, the
optimal acceptance rate for a symmetric product form
target density is 0.234
 empirically this works well in lower dimensions and other
targets, though for very small d should be increased (eg
~ 0.44 in 1D)

32/37
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Demo

Enough talk ...

©® Example Metropolis-Hastings sampler in R (MCMC.R)
® MCMC convergence Shiny demo (Shiny/MCMC>R)
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Adaptive MCMC

Clearly there is an issue: we may get terrible results by making
a poor choice of proposal.
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Adaptive MCMC

Clearly there is an issue: we may get terrible results by making
a poor choice of proposal.

We can learn from the samples we have already seen to
automatically improve our proposal distribution.

@(-|ve-1) = q(- |w—1, {21, ., 21 })
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Adaptive MCMC

Clearly there is an issue: we may get terrible results by making
a poor choice of proposal.

We can learn from the samples we have already seen to
automatically improve our proposal distribution.

q(-|2e—1) = q(- |ze—1, {21, .. ., T4-1})
Warning: this breaks Markov property!

Adaptive MCMC Conditions

« Stationarity: 7 (-) must be stationary for ¢ (- | x;—1) Vt
* Diminishing adaptation:

nh—{goilelg HKt( |z) — Kit1(- ’33)” =0

« Containment: Time to stationarity from any point in
chain with adapted kernel bounded in probability.

34/37



MCMC

Adaptive MCMC — Haario et al / Roberts & Rosenthal

Idea?
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MCMC

Adaptive MCMC — Haario et al / Roberts & Rosenthal

Idea?

2.382 .
Qt(' |33t—1) ~ N (xt—la Et)

This doesn’t quite work, use

2 2
@(-|2-1) = (1= B)N (wt—h 2'38 f)t) + BN (%—17 01[)

d

to satisfy adaptive conditions.
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MCMC

Adaptive MCMC — Haario et al / Roberts & Rosenthal

Idea?

2.382 .
Qt(' |33t—1) ~ N (xt—la Et)

This doesn’t quite work, use

2.382 . 0.12
(- |ze—1) = (1= B)N (wt—h ] 21&) + BN (xt—h dI>

to satisfy adaptive conditions.

2.382/d is the optimal scaling in certain theoretical
circumstances. Alternative, scale to target an acceptance rate:

- 0.1
@(-lze-1) = (1= B)N (l'tfla em Et) + BN | z¢-1, 71
where split into batches b of size 50, say, with

Yo = 1 + (—1)H@-1<04) 1yin 10,01, n 2}
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In Practice
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In Practice

Software

« mcmc R package
¢ metrop for the kind of MCMC shown today
+ temper to handle multi-modality sa

e Stan
* www.mc-stan. org
e Hamiltonian Monte Carlo
- several languages

* Birch
* www.birch-lang.org
 Sequential Monte Carlo
 brand new and particularly exciting probabilistic
programming language

37/37
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