# Cryptographically secure multiparty evaluation of system reliability

Louis J. M. Aslett (aslett@stats.ox.ac.uk)

Department of Statistics, University of Oxford and Corpus Christi College, Oxford

ISBIS 2016 7 June 2016





Example

## Introduction (I)

**Objective:** inference on system/network reliability given component test data.



Aslett, L. J. M., Coolen, F. P. A., & Wilson, S. P. (2015). 'Bayesian inference for reliability of systems and networks using the survival signature', *Risk Analysis*, **35**(9), 1640–1651.

#### Introduction (II)

But, what are the privacy requirements of data owners?

**New objective:** inference on system/network reliability whilst *maintaining privacy requirements* of all parties.



Encryption can provide security guarantees ...

... but is typically 'brittle'.

Encryption can provide security guarantees ...

$$\operatorname{Enc}(k_p,m) \stackrel{\longleftarrow}{\rightleftharpoons} c$$
  $\operatorname{Dec}(k_{\operatorname{S}},c) = m$  Hard without  $k_s$ 

... but is typically 'brittle'.

Encryption can provide security guarantees ...

$$\operatorname{Enc}(k_p,m) \stackrel{ extstyle }{\rightleftharpoons} c$$
  $\operatorname{Dec}(k_{\operatorname{s}},c) = m$  Hard without  $k_s$ 

... but is typically 'brittle'.

$$m_1 \qquad m_2 \stackrel{+}{\longrightarrow} m_1 + m_2$$

Encryption can provide security guarantees ...

$$\operatorname{Enc}(k_p,m) \stackrel{ extstyle }{\rightleftharpoons} c$$
  $\operatorname{Dec}(k_{\operatorname{\mathcal{S}}},c) = m$  Hard without  $k_s$ 

... but is typically 'brittle'.

$$m_1$$
  $m_2$   $\xrightarrow{+}$   $m_1 + m_2$ 

$$\downarrow \mathsf{Enc}(k_p, \cdot) \downarrow \mathsf{V}$$
 $c_1$   $c_2$ 

Encryption can provide security guarantees ...

$$\operatorname{Enc}(k_p,m) \stackrel{\longleftarrow}{\rightleftharpoons} c$$
  $\operatorname{Dec}(k_s,c) = m$  Hard without  $k_s$ 

... but is typically 'brittle'.

$$m_1$$
  $m_2$   $\xrightarrow{+}$   $m_1 + m_2$ 

$$\downarrow \mathsf{Enc}(k_p, \cdot) \downarrow \qquad \qquad \bigwedge \mathsf{Dec}(k_s, \cdot)$$
 $c_1$   $c_2$   $\xrightarrow{\oplus}$   $c_1 \oplus c_2$ 

Encryption can provide security guarantees ...

$$\operatorname{Enc}(k_p,m) \stackrel{\longleftarrow}{\rightleftharpoons} c$$
  $\operatorname{Dec}(k_s,c) = m$  Hard without  $k_s$ 

... but is typically 'brittle'.

#### Definition (Homomorphic encryption scheme)

An encryption scheme is said to be *homomorphic* if there is a set of operations  $\circ \in \mathcal{F}_M$  acting in message space, M, that have corresponding operations  $\diamond \in \mathcal{F}_C$  acting in cipher text space, C, satisfying the property:

$$\operatorname{\mathsf{Dec}}(k_{\mathtt{S}},\operatorname{\mathsf{Enc}}(k_{p},m_{1})\diamond\operatorname{\mathsf{Enc}}(k_{p},m_{2}))=m_{1}\circ m_{2}\quad orall\ m_{1},m_{2}\in M$$

A scheme is *fully homomorphic* if  $\mathcal{F}_M = \{+, \times\}$  and an arbitrary number of such operations are possible.

#### Definition (Homomorphic encryption scheme)

An encryption scheme is said to be *homomorphic* if there is a set of operations  $\circ \in \mathcal{F}_M$  acting in message space, M, that have corresponding operations  $\diamond \in \mathcal{F}_C$  acting in cipher text space, C, satisfying the property:

$$\operatorname{Dec}(k_{s},\operatorname{Enc}(k_{p},m_{1})\diamond\operatorname{Enc}(k_{p},m_{2}))=m_{1}\circ m_{2}\quad orall\ m_{1},m_{2}\in M$$

A scheme is *fully homomorphic* if  $\mathcal{F}_M = \{+, \times\}$  and an arbitrary number of such operations are possible.

 $\{+, \times\}$  pretty limiting? Note that if M = GF(2), then:

- $\times \equiv \land$ , i.e. AND, 'and'

Moreover, *any* electronic logic gate can be constructed using only XOR and AND gates.

# Limitations of homomorphic encryption

- Message space (what we can encrypt)
  - Commonly only easy to encrypt binary/integers/polynomials
- 2 Cipher text size (the result of encryption)
  - Present schemes all inflate the size of data substantially (e.g.  $1MB \rightarrow 16.4GB$ )
- **3** Computational cost (computing without decrypting)
  - 1000's additions per sec
  - $\approx 50$  multiplications per sec
- Division and comparison operations (equality/inequality checks)
  - · Not possible in current schemes!
- **5** Depth of operations
  - After a certain depth of multiplications, need to 'refresh' cipher text: hugely time consuming, so avoid!

# Survival signature

Coolen & Coolen-Maturi (2012) rethought system signatures (Samaniego 1985) with the objective of retaining separation of structure and component lifetimes for multiple component types.

Coolen & Coolen-Maturi (2012) rethought system signatures (Samaniego 1985) with the objective of retaining separation of structure and component lifetimes for multiple component types.

#### Definition (Survival signature)

Consider a system comprising K component types, with  $M_k$ components of type  $k \in \{1, \dots, K\}$ . Then the *survival signature*  $\Phi(l_1,\ldots,l_K)$ , with  $l_k \in \{0,1,\ldots,M_k\}$ , is the probability that the system functions given precisely  $l_k$  of its components of type k function.

$$\Phi(l_1,\ldots,l_K) = \left[\prod_{k=1}^K \binom{M_k}{l_k}^{-1}\right] \sum_{\mathbf{x} \in S_{l_k}} \varphi(\underline{\mathbf{x}})$$

where  $S_{l_1,\ldots,l_k} = \{\underline{x}: \sum_{i=1}^{M_k} x_i^k = l_k \quad \forall k\}$ 

Introduction

## Survival signature toy example



| Τ1 | T2 | Τ3 | Φ    | Τ1 | T2 | Τ3 | Φ    |
|----|----|----|------|----|----|----|------|
| 0  | 0  | 1  | 0    | 0  | 1  | 1  | 0    |
| 1  | 0  | 1  | 0    | 1  | 1  | 1  | 0    |
| 2  | 0  | 1  | 0.33 | 2  | 1  | 1  | 0.67 |
| 3  | 0  | 1  | 1    | 3  | 1  | 1  | 1    |
| 4  | 0  | 1  | 1    | 4  | 1  | 1  | 1    |

Table 1: Survival signature for a bridge system, omitting all rows with T3 = 0, since  $\Phi = 0$  for these.

## System lifetimes

Let  $C_t^k \in \{0, 1, \dots, M_k\}$  be random variable denoting number of components of type k surviving at time t. Then, survival function of system lifetime  $T_{\varsigma}$  is:

$$\mathbb{P}(T_S > t) = \sum_{l_1=0}^{M_1} \cdots \sum_{l_K=0}^{M_K} \Phi(l_1, \dots, l_K) \, \mathbb{P}\left(\bigcap_{k=1}^K \{C_t^k = l_k\}\right)$$
$$= \sum_{l_1=0}^{M_1} \cdots \sum_{l_K=0}^{M_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^K \mathbb{P}\left(C_t^k = l_k\right)$$

if the component types are independent.

# ystem metimes

Let  $C_t^k \in \{0, 1, ..., M_k\}$  be random variable denoting number of components of type k surviving at time t. Then, survival function of system lifetime  $T_S$  is:

$$\mathbb{P}(T_S > t) = \sum_{l_1=0}^{M_1} \cdots \sum_{l_K=0}^{M_K} \Phi(l_1, \dots, l_K) \, \mathbb{P}\left(\bigcap_{k=1}^K \{C_t^k = l_k\}\right)$$
$$= \sum_{l_1=0}^{M_1} \cdots \sum_{l_K=0}^{M_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^K \mathbb{P}\left(C_t^k = l_k\right)$$

if the component types are independent.

**Note:** this is a homogeneous polynomial of degree K+1 in the survival signature and component survival probabilities  $\implies$  can evaluate encrypted.

Example

# Propagating uncertainty as a Bayesian

$$\begin{split} &P(T_{S^*} > t \,|\, \underline{y}_1, \dots \underline{y}_K) \\ &= \int \dots \int P(T_{S^*} > t \,|\, p_t^1, \dots p_t^K) P(dp_t^1 \,|\, \underline{y}_1) \dots P(dp_t^K \,|\, \underline{y}_K) \\ &= \int \dots \int \left[ \sum_{l_1=0}^{M_1} \dots \sum_{l_K=0}^{M_K} \Phi(l_1, \dots, l_K) P\left( \bigcap_{k=1}^K \{C_t^k = l_k \,|\, p_t^k\} \right) \right] \\ &\qquad \qquad \times P(dp_t^1 \,|\, \underline{y}_1) \dots P(dp_t^K \,|\, \underline{y}_K) \\ &= \sum_{l_1=0}^{M_1} \dots \sum_{l_K=0}^{M_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^K \int P(C_t^k = l_k \,|\, p_t^k) P(dp_t^k \,|\, \underline{y}_k) \end{split}$$

A homogeneous polynomial of degree K + 1 in the survival signature and posterior predictive component survival probabilities at each time point  $\implies$  can still evaluate encrypted.

#### Back to the problem at hand ...











Manufacturer 1

Privacy Preserving Protocol



Manufacturer 1





Manufacturer 1

Introduction



Manufacturer K

Privacy Preserving Protocol

Manufacturer K



#### Example system



Figure 1: Simple automotive braking system. The master brake cylinder (M) engages all the four wheel brake cylinders (C1 – C4). These in turn each trigger a braking pad assembly (P1 – P4). The hand brake (H) goes directly to the rear brake pad assemblies P3 and P4; the vehicle brakes when at least one of the brake pad assemblies is engaged.

Example

# Experimental results

Homomorphic Encryption

In order to examine the practicality of the problem, perform a full encrypted analysis using Amazon EC2 cloud computing service to mimic a global supply chain.

| Physical Server Location | Server Type                                                                           |  |
|--------------------------|---------------------------------------------------------------------------------------|--|
| Dublin, Ireland          | m4.10xlarge                                                                           |  |
| Northern California, USA | m4.10xlarge                                                                           |  |
| São Paulo, Brazil        | c3.8xlarge                                                                            |  |
| Sydney, Australia        | r3.4xlarge                                                                            |  |
| Tokyo, Japan             | i2.8xlarge                                                                            |  |
|                          | Dublin, Ireland<br>Northern California, USA<br>São Paulo, Brazil<br>Sydney, Australia |  |

Precision was set to  $\nu = 5$  and system designer specifies an evenly spaced time grid of 100 points  $t \in [0, 5]$ .

| Role                               | Action                     | Timing / Size |
|------------------------------------|----------------------------|---------------|
|                                    | Generation of $(k_p, k_s)$ | 0.3 secs      |
| System designer<br>Dublin, Ireland |                            |               |
|                                    |                            |               |
|                                    |                            |               |
|                                    |                            |               |
|                                    |                            |               |
|                                    |                            |               |
|                                    |                            |               |
|                                    |                            |               |
|                                    |                            |               |
|                                    |                            |               |

| Role                               | Action                                                    | Timing / Size               |  |
|------------------------------------|-----------------------------------------------------------|-----------------------------|--|
| System designer<br>Dublin, Ireland | Generation of $(k_p,k_s)$<br>Encryption of $\Xi^{(\Phi)}$ | 0.3 secs<br>1 min 41.1 secs |  |
|                                    |                                                           |                             |  |
|                                    |                                                           |                             |  |
|                                    |                                                           |                             |  |

| Role            | Action                        | Timing / Size   |
|-----------------|-------------------------------|-----------------|
|                 | Generation of $(k_p, k_s)$    | 0.3 secs        |
| System designer | Encryption of $\Xi^{(\Phi)}$  | 1 min 41.1 secs |
| Dublin, Ireland | Saving $\Xi^{(\Phi)}$ to disk | 2 min 41.3 secs |
|                 |                               |                 |
|                 |                               |                 |
|                 |                               |                 |
|                 |                               |                 |
|                 |                               |                 |
|                 |                               |                 |
|                 |                               |                 |
|                 |                               |                 |

| Role                               | Action                             | Timing / Size   |
|------------------------------------|------------------------------------|-----------------|
|                                    | Generation of $(k_p, k_s)$         | 0.3 secs        |
| Creator designer                   | Encryption of $\Xi^{(\Phi)}$       | 1 min 41.1 secs |
| System designer<br>Dublin, Ireland | Saving $\Xi^{(\Phi)}$ to disk      | 2 min 41.3 secs |
| Dublin, Ireland                    | Compressing $\Xi^{(\Phi)}$ on disk | 48.0 secs       |
|                                    | Size of $\Xi^{(\Phi)}$ on disk     | 5.5GB           |

| Role              | Action                                 | Timing | / Size    |
|-------------------|----------------------------------------|--------|-----------|
|                   | Generation of $(k_p, k_s)$             |        | 0.3 secs  |
| System designer   | Encryption of $\Xi^{(\Phi)}$           | 1 min  | 41.1 secs |
| Dublin, Ireland   | Saving $\Xi^{(\Phi)}$ to disk          | 2 min  | 41.3 secs |
| Dubiiii, ileiailu | Compressing $\Xi^{(\Phi)}$ on disk     |        | 48.0 secs |
|                   | Size of $\Xi^{(\Phi)}$ on disk         | 5.     | 5GB       |
| Transf            | Fer $\Xi^{(\Phi)}$ to Manufacturer $C$ | 11 min | 37.5 secs |
| Manufacturer C    |                                        |        |           |
| Northern          |                                        |        |           |
| California, USA   |                                        |        |           |

| Role              | Action                                     | Timing / Size |           |
|-------------------|--------------------------------------------|---------------|-----------|
|                   | Generation of $(k_p, k_s)$                 |               | 0.3 secs  |
| System designer   | Encryption of $\Xi^{(\overline{\Phi})}$    | 1 min         | 41.1 secs |
| Dublin, Ireland   | Saving $\Xi^{(\Phi)}$ to disk              | 2 min         | 41.3 secs |
| Dubilli, freiafiu | Compressing $\Xi^{(\Phi)}$ on disk         |               | 48.0 secs |
|                   | Size of $\Xi^{(\Phi)}$ on disk             | 5.            | 5GB       |
| Transfe           | er $\Xi^{(\Phi)}$ to Manufacturer C        | 11 min        | 37.5 secs |
| Manufacturer C    | Decompress & load $\Xi^{(\Phi)}$ from disk | 10 min        | 22.4 secs |
| Northern          |                                            |               |           |
| California, USA   |                                            |               |           |

| Role              | Action                                              | Timing / Size |           |
|-------------------|-----------------------------------------------------|---------------|-----------|
|                   | Generation of $(k_p, k_s)$                          |               | 0.3 secs  |
| System designer   | Encryption of $\Xi^{(\Phi)}$                        | 1 min         | 41.1 secs |
| Dublin, Ireland   | Saving $\Xi^{(\Phi)}$ to disk                       | 2 min         | 41.3 secs |
| Dubilli, Ileiailu | Compressing $\Xi^{(\Phi)}$ on disk                  |               | 48.0 secs |
|                   | Size of $\Xi^{(\Phi)}$ on disk                      | 5.            | 5GB       |
| Transfe           | $\operatorname{Er}\Xi^{(\Phi)}$ to Manufacturer $C$ | 11 min        | 37.5 secs |
| Manufacturer C    | Decompress & load $\Xi^{(\Phi)}$ from disk          | 10 min        | 22.4 secs |
| Northern          | Update $\Xi^{(\Phi)}$                               | 6 min         | 18.3 secs |
| California, USA   |                                                     |               |           |

| Role              | Action                                      | Timing | / Size    |
|-------------------|---------------------------------------------|--------|-----------|
|                   | Generation of $(k_p, k_s)$                  |        | 0.3 secs  |
| System designer   | Encryption of $\Xi^{(\Phi)}$                | 1 min  | 41.1 secs |
| Dublin, Ireland   | Saving $\Xi^{(\Phi)}$ to disk               | 2 min  | 41.3 secs |
| Dubilli, freialiu | Compressing $\Xi^{(\Phi)}$ on disk          |        | 48.0 secs |
|                   | Size of $\Xi^{(\Phi)}$ on disk              | 5.     | 5GB       |
| Transfe           | er $\Xi^{(\Phi)}$ to Manufacturer C         | 11 min | 37.5 secs |
| Manufacturer C    | Decompress & load $\Xi^{(\Phi)}$ from disk  | 10 min | 22.4 secs |
| Northern          | Update $\Xi^{(\Phi)}$                       | 6 min  | 18.3 secs |
| California, USA   | Saving & compressing $\Xi^{(\Phi)}$ to disk | 2 min  | 9.8 secs  |

| Role              | Action                                      | Timing | / Size    |
|-------------------|---------------------------------------------|--------|-----------|
| -                 | Generation of $(k_p, k_s)$                  |        | 0.3 secs  |
| System designer   | Encryption of $\Xi^{(\Phi)}$                | 1 min  | 41.1 secs |
| Dublin, Ireland   | Saving $\Xi^{(\Phi)}$ to disk               | 2 min  | 41.3 secs |
| Dabini, irciana   | Compressing $\Xi^{(\Phi)}$ on disk          |        | 48.0 secs |
|                   | Size of $\Xi^{(\Phi)}$ on disk              | 5.     | 5GB       |
| Transfe           | $r\Xi^{(\Phi)}$ to Manufacturer C           | 11 min | 37.5 secs |
| Manufacturer C    | Decompress & load $\Xi^{(\Phi)}$ from disk  | 10 min | 22.4 secs |
| Northern          | Update $\Xi^{(\Phi)}$                       | 6 min  | 18.3 secs |
| California, USA   | Saving & compressing $\Xi^{(\Phi)}$ to disk | 2 min  | 9.8 secs  |
| Transfe           | $r\Xi^{(\Phi)}$ to Manufacturer H           | 11 min | 24.4 secs |
| Manufacturer H    | Decompress & load $\Xi^{(\Phi)}$ from disk  | 10 min | 13.2 secs |
| São Paulo, Brazil | Update $\Xi^{(\Phi)}$                       | 7 min  | 23.1 secs |
| •                 | Saving & compressing $\Xi^{(\Phi)}$ to disk | 4 min  | 45.2 secs |
| Transfe           | Transfer $\Xi^{(\Phi)}$ to Manufacturer M   |        | 16.5 secs |
| Manufacturer M    | Decompress & load $\Xi^{(\Phi)}$ from disk  | 9 min  | 41.0 secs |
| Sydney, Australia | Update $\Xi^{(\Phi)}$                       | 11 min | 28.2 secs |
|                   | Saving & compressing $\Xi^{(\Phi)}$ to disk | 2 min  | 54.2 secs |

| Role            | Action                                     | Timing | / Size    |
|-----------------|--------------------------------------------|--------|-----------|
| Transf          | Fer $\Xi^{(\Phi)}$ to Manufacturer P       | 6 min  | 40.7 secs |
|                 | Decompress & load $\Xi^{(\Phi)}$ from disk | 9 min  | 57.1 secs |
| Manufacturer P  | Update $\Xi^{(\Phi)}$                      | 7 min  | 13.5 secs |
| Tokyo, Japan    | Compute $\xi$                              |        | 6.1 secs  |
| iokyo, japan    | Saving & compressing $\xi$ to disk         |        | 2.5 secs  |
|                 | Size of $\xi$ on disk                      | 58.    | .4MB      |
| Trans           | Transfer ξ to System Designer              |        | 39.5 secs |
| System designer | Decompress & load $\xi$ from disk          |        | 5.9 secs  |
| Dublin, Ireland | Decryption of $\xi$                        |        | 8.6 secs  |
| Total:          | 2 hr                                       | 18 min | 38.4 secs |

#### Result



#### References

Aslett, L. J. M., Coolen, F. P. A., & Wilson, S. P. (2015). Bayesian inference for reliability of systems and networks using the survival signature. *Risk Analysis*, 35/9: 1640–51. DOI: 10.1111/risa.12228

Aslett, L. J. M., Esperança, P. M., & Holmes, C. C. (2015). *A review of homomorphic encryption and software tools for encrypted statistical machine learning*. University of Oxford. Retrieved from

<http://arxiv.org/abs/1508.06574>

Coolen, F. P. A., & Coolen-Maturi, T. (2012). Generalizing the signature to systems with multiple types of components. *Complex systems and dependability*, pp. 115–30. Springer.

Gentry, C. (2009). *A fully homomorphic encryption scheme* (PhD thesis). Stanford University. Retrieved from <crypto.stanford.edu/craig> Rivest, R. L., Adleman, L., & Dertouzos, M. L. (1978). On data banks and privacy homomorphisms. *Foundations of Secure Computation*, 4/11: 169–80. Samaniego, F. J. (1985). On closure of the IFR class under formation of coherent systems. *IEEE Transactions on Reliability*, 34/1: 69–72. DOI: 10.1109/TR.1985.5221935