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Introduction
Introduction (I)

Objective: inference on system/network reliability given
component test data.
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Aslett, L. J. M., Coolen, F. P. A., & Wilson, S. P. (2015).
‘Bayesian inference for reliability of systems and networks
using the survival signature’, Risk Analysis, 35(9), 1640-1651.
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Introduction

Introduction (II)

But, what are the privacy requirements of data owners?

New objective: inference on system/network reliability whilst
maintaining privacy requirements of all parties.
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Homomorphic Encryption

Encryption the solution?

Encryption can provide security guarantees ...

Easy
Enc(k,,m) = c Dec(ks,c) = m
Hard without &,

... but is typically ‘brittle’.
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Homomorphic Encryption

Formal definition

Definition (Homomorphic encryption scheme)

An encryption scheme is said to be homomorphic if there is a
set of operations o € Fj; acting in message space, M, that have
corresponding operations ¢ € F¢ acting in cipher text space, C,
satisfying the property:

Dec(ks, Enc(ky,my) o Enc(kp,my)) =myomy YV my,mg e M

A scheme is fully homomorphic if Fy; = {+, x} and an arbitrary
number of such operations are possible.
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Formal definition

Definition (Homomorphic encryption scheme)

An encryption scheme is said to be homomorphic if there is a
set of operations o € Fj; acting in message space, M, that have
corresponding operations ¢ € F¢ acting in cipher text space, C,
satisfying the property:

Dec(ks, Enc(ky,my) o Enc(kp,my)) =myomy YV my,mg e M

A scheme is fully homomorphic if Fy; = {+, x} and an arbitrary
number of such operations are possible.

{+, x} pretty limiting? Note that if M = GF(2), then:

* + =V, i.e.XOR, ‘exclusive or’

e X = A, i.e. AND, ‘and’
Moreover, any electronic logic gate can be constructed using
only XOR and AND gates.
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Homomorphic Encryption

Limitations of homomorphic encryption

@ Message space (what we can encrypt)
« Commonly only easy to encrypt
binary/integers/polynomials
® Cipher text size (the result of encryption)

« Present schemes all inflate the size of data substantially
(e.g. IMB — 16.4GB)

©® Computational cost (computing without decrypting)
 1000’s additions per sec
« =~ 50 multiplications per sec
@ Division and comparison operations (equality/inequality
checks)
 Not possible in current schemes!
@ Depth of operations

« After a certain depth of multiplications, need to ‘refresh’

cipher text: hugely time consuming, so avoid!
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Survival Signature

Survival signature

Coolen & Coolen-Maturi (2012) rethought system signatures
(Samaniego 1985) with the objective of retaining separation of
structure and component lifetimes for multiple component

types.
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Survival Signature

Survival signature

Coolen & Coolen-Maturi (2012) rethought system signatures
(Samaniego 1985) with the objective of retaining separation of
structure and component lifetimes for multiple component

types.

Definition (Survival signature)

Consider a system comprising K component types, with M,
components of type k € {1, ..., K}. Then the survival signature
o(ly,...,Ig), with [, € {0,1,..., M.}, is the probability that the
system functions given precisely [ of its components of type k
function.

q>(11,‘..,1,<):{ﬁ (M">_1] > o)

where S, = {x: Y xk =1 vk}
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Survival Signature

Survival signature toy example

T1 T1
T2 T3 -
T1 T1
T1 T2 T3 ¢ Tl T2 T3 &
O o0 1 o0 0O 1 1 0
1 0 1 O 1 1 1 O
2 0 1 0.33 2 1 1 0.67
35 0 1 1 3 1 1 1
4 0 1 1 4 1 1 1

Table 1: Survival signature for a bridge system, omitting all rows
with T3 = 0, since ® = 0 for these.
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Survival Signature

System lifetimes

Let Ck € {0, 1,..., My} be random variable denoting number of
components of type k surviving at time t. Then, survival
function of system lifetime Ty is:

M Mg
P(Ts > t) = Z--.Z@(ll,...,lK)P(ﬂ{c’;zlk})

1,=0 Ix=0 k=1
M Mg

_ Z Z(I)(ll,...,lK)HP<CIt<:lk>
L=0  Ix=0 k=1

if the component types are independent.
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Survival Signature

System lifetimes

Let Ck € {0, 1,..., My} be random variable denoting number of
components of type k surviving at time t. Then, survival
function of system lifetime Ty is:

M Mg
P(Ts > t) = Z--.Z@(ll,...,lK)P(ﬂ{c’;zlk})

1,=0 Ix=0 k=1
M Mg

_ Z Z(I)(ll,...,lK)HP<CIt<:lk>
L=0  Ix=0 k=1

if the component types are independent.

Note: this is a homogeneous polynomial of degree K + 1 in the
survival signature and component survival probabilities —-

can evaluate encrypted.
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Survival Signature

Propagating uncertainty as a Bayesian

P(TS* > t|X1""XK)

:/.../p(Ts* >t|pt,...pHPWpt |y,) ... P(dpfly,)
M, Mg

:// S-S a(l,. k) (ﬂ{ck L | pF} )]
L=0  Ig=0

M, K
-3 - Z 11,.--,11<>H/P<c§=1k|p’;>P<dp’;|xk>
k=1

h= Ix=0

A homogeneous polynomial of degree K + 1 in the survival
signature and posterior predictive component survival
probabilities at each time point = can still evaluate
encrypted.
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Privacy Preserving Protocol

Privacy Preserving Protocol
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Privacy Preserving Protocol

Back to the problem at hand ...

o

Manufacturer 1

o

Manufacturer K

»\\/

System Designer
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Privacy Preserving Protocol

System Designer
D(ly,...,1lk)
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1 X

System Designer

ks @  kp
0
0
‘I)(Zly ZK) _
E= I
my

Privacy Preserving Pro

0 Enc(kp, [10°®(0,....0)])
1 Enc (kp, [10V®(0,..., 1))
Ik Enc(ky [10°(L,. ... 1x)])

mpg  Enc (kp, [10"®(m1,...,mk)])
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Privacy Preserving Protocol

ks @ K
A 0 0 Enc(kp, [10°®(0,...,0)])
System Designer 0 1 Enc (kp, [10°9(0,...,1)])
O(l1y. 1K) - :
== u Ix  Enc(ky, [10°®(L,...,1x)])
v E :
my mpg  Enc (kp, [10"®(my,...,mg)])

Manufacturer 1
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Privacy Preserving Protocol

1 0 - 0 Enc (ky, | 10V®(0,....,0)])

System Designer

0 - 1 Enc (ky, [10V®(0,..., 1)])

mpg  Enc (kp, [10"®(my,...,mg)])

Manufacturer 1
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Privacy Preserving Pro

ks @ K
1 0 - 0 Enc (kp, [10°®(0, ..., 0)])
System Designer 0 - 1 Enc (kp, [10°®(0, ..., 1)])
O(ly,...,lKk) : : :
ST b - Ik Enc(ky, [10V0(L,..., 1))
1% S
my my  Enc(ky, [10°®(my, ..., mg)])
@ — —a—

Manufacturer 1

Manufacturer K
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Privacy Preserving Pro

1 0 -+ 0 Enc(ky [10°®(0,...,0)])
1

System Designer (U Enc (ky, [1079(0,...,1)

I

Manufacturer K
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Privacy Preserving Pro

ks @ K
1 0 - 0 Enc (ky, [1079(0, ..., 0))
System Designer 0 - 1 Enc (ky, [10"9(0, ..., 0
(..., lK) _ : :
ST n o Ik Enc(ky, [10°0(1,. . Ik)])

Manufacturer 1

Manufacturer K
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Example
Example system

— C1 Pl
— C2 P2
Ng= |
— C3 P3

H FT— —
— C4 P4J

Figure 1: Simple automotive braking system. The master brake
cylinder (M) engages all the four wheel brake cylinders (C1 — C4).
These in turn each trigger a braking pad assembly (P1 — P4). The
hand brake (H) goes directly to the rear brake pad assemblies P3 and
P4; the vehicle brakes when at least one of the brake pad assemblies

is engaged.
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Example
Experimental results

In order to examine the practicality of the problem, perform a
full encrypted analysis using Amazon EC2 cloud computing
service to mimic a global supply chain.

Role Physical Server Location Server Type
System designer  Dublin, Ireland m4.10xlarge
Manufacturer C  Northern California, USA  m4.10xlarge
Manufacturer H  Sao Paulo, Brazil c3.8xlarge
Manufacturer M  Sydney, Australia r3.4xlarge
Manufacturer P Tokyo, Japan i2.8xlarge

Precision was set to » = 5 and system designer specifies an
evenly spaced time grid of 100 points t € [0, 5].
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Example

Computational cost (I)

Role Action Timing / Size
Generation of (kp, k) 0.3 secs

System designer
Dublin, Ireland
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Example
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Computational cost (I)

Example

Role Action Timing / Size
Generation of (kp, k) 0.3 secs
. :,(@) -
System designer Enc.ryptiOQ of_. 1 m}n 41.1 secs
: Saving =(®) to disk 2min 41.3secs
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Computational cost (I)

Example

Role Action Timing / Size
Generation of (kp, k) 0.3 secs
. ,:(@) -
System designer Enc.ryptiOQ of_. 1 m}n 41.1 secs
: Saving =(®) to disk 2min 41.3secs
Dublin, Ireland . ® .
Compressing Z(®) on disk 48.0 secs
Size of 2(®) on disk 5.5GB
Transfer =®) to Manufacturer C 11min 37.5 secs

Manufacturer C
Northern
California, USA

Decompress & load 2(® from disk 10 min 22.4 secs
Update (%) 6min 18.3 secs
Saving & compressing 2(®) todisk 2min 9.8 secs

Transfer 2(®) to Manufacturer H 11 min 24.4 secs

Manufacturer H

Decompress & load 2(® from disk 10min 13.2 secs

S0 Paulo. Bragil ~ UPdate =(®) 7min 23.1 secs
’ Saving & compressing 2(®) todisk 4 min 45.2 secs

Transfer E(®) to Manufacturer M 20min 16.5 secs
Manufacturer M Decompress & load 2(®) from disk 9 min 41.0 secs
Update =(®) 11 min 28.2 secs

Sydney, Australia

Saving & compressing 2(®) todisk 2 min 54.2 secs
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Example

Computational cost (II)

Role Action Timing / Size
Transfer 2® to Manufacturer P 6min 40.7 secs
Decompress & load Z(® fromdisk 9 min 57.1 secs
Update 2(®) 7min 13.5 secs

Manufacturer P

Tokyo, Japan Compute & 6.1 secs
’ Saving & compressing ¢ to disk 2.5 secs

Size of £ on disk 58.4MB
Transfer £ to System Designer 39.5 secs
System designer Decompress & load ¢ from disk 5.9 secs
Dublin, Ireland Decryption of ¢ 8.6 secs

Total: 2hr 18 min 38.4 secs
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