
1/32

Background GPUs Cloud

.

.
Background on HPC for Statistics

Louis J. M. Aslett (aslett@stats.ox.ac.uk)

Department of Statistics, University of Oxford

Graduate Lecture Series
28 April 2016: University of Oxford

www.louisaslett.com

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/
mailto:aslett@stats.ox.ac.uk


2/32

Background GPUs Cloud

Background

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


3/32

Background GPUs Cloud

Introduction

High performance computing is becoming increasingly
important in both applied statistics and statistical
methodology.

• Scaling existing methods to larger and more complex
applications;

• Developing new methods which are amenable to scaling
within the contraints that exist in modern HPC

Fundamentally it comes down to parallelism, which can be
exploited using different (or ideally all) technologies:

• CPU
• GPU
• Cluster
• Cloud

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


4/32

Background GPUs Cloud

Bayesian statistics & computing

• 1970s reliance on conjugacy results abounds (e.g. skim
classic Box and Tiao 1973)

• 1990s MCMC techniques go mainstream opening up all
sorts of models (sampler slow? Just wait a year!)

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


4/32

Background GPUs Cloud

Bayesian statistics & computing

• 1970s reliance on conjugacy results abounds (e.g. skim
classic Box and Tiao 1973)

• 1990s MCMC techniques go mainstream opening up all
sorts of models (sampler slow? Just wait a year!)

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


5/32

Background GPUs Cloud

‘The free lunch is over’ — Herb Sutter

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


6/32

Background GPUs Cloud

‘The free lunch is over’ — Herb Sutter

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


7/32

Background GPUs Cloud

Bayesian statistics & computing

• 1970s reliance on conjugacy results abounds (e.g. skim
classic Box and Tiao 1973)

• 1990s MCMC techniques go mainstream opening up all
sorts of models (sampler slow? Just wait a year!)

• 2010s trying to make MCMC parallel friendly firmly
embedded as an important research direction

• July 2006 Intel ship first desktop class dual core CPU
• August 2006 Amazon EC2 launches as a public beta
(production in 2008)

• November 2006 nVidia announce CUDA, first ever C
development environment for GPUs

• ≈ 9 years later:
• 12 core Intel Xeon CPUs (/w 30MB cache)
• 2 × 2, 496 core Tesla K80 GPUs (/w 12GB GDDR)
• ≥ 50, 000 core EC2 clusters launched (/w 29TB RAM)

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


7/32

Background GPUs Cloud

Bayesian statistics & computing

• 1970s reliance on conjugacy results abounds (e.g. skim
classic Box and Tiao 1973)

• 1990s MCMC techniques go mainstream opening up all
sorts of models (sampler slow? Just wait a year!)

• 2010s trying to make MCMC parallel friendly firmly
embedded as an important research direction

• July 2006 Intel ship first desktop class dual core CPU
• August 2006 Amazon EC2 launches as a public beta
(production in 2008)

• November 2006 nVidia announce CUDA, first ever C
development environment for GPUs

• ≈ 9 years later:
• 12 core Intel Xeon CPUs (/w 30MB cache)
• 2 × 2, 496 core Tesla K80 GPUs (/w 12GB GDDR)
• ≥ 50, 000 core EC2 clusters launched (/w 29TB RAM)

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


8/32

Background GPUs Cloud

Background reading

• ‘The free lunch is over: A fundamental turn toward
concurrency in software’ — http:
//www.gotw.ca/publications/concurrency-ddj.htm

• ‘Welcome to the jungle’ —
http://herbsutter.com/welcome-to-the-jungle/

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://herbsutter.com/welcome-to-the-jungle/


9/32

Background GPUs Cloud

Massively simplified architecture

CPU

Motherboard
Chipset

Hard
Drive

GPU

6G
B 

G
D

D
R

32
G

B 
D

D
R3L1

L2

L1
L2

L1
L2

L1
L2

L3

Network

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


10/32

Background GPUs Cloud

Some reading pointers

• Goldberg, D. (1991). What every computer scientist should
know about floating-point arithmetic. ACM Computing
Surveys (CSUR), 23(1), p. 5-48.

• Drepper, U. (2007). ‘What Every Programmer Should Know
About Memory’, §1 – §5

If you really enjoy this stuff, the following are as detailed and
advanced as it gets outside Intel & AMD:

• Fog, A. (2014). ‘The microarchitecture of Intel, AMD and
VIA CPUs: An optimization guide for assembly
programmers and compiler makers’, http:
//www.agner.org/optimize/microarchitecture.pdf

• Fog, A. (2014). ‘Instruction tables: Lists of instruction
latencies, throughputs and micro-operation breakdowns
for Intel, AMD and VIA CPUs’, http:
//www.agner.org/optimize/instruction_tables.pdf

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/
http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf


11/32

Background GPUs Cloud

General (very subjective) comments on HPC

..1 “Premature optimisation is the root of all evil” — old
saying, but true

..2 Don’t guess or even excessively trust back-of-envelope
theoretical calculations about where your bottleneck is …
measure it!

..3 Getting extreme parallel programming right is tough.
Create a ‘master’ version which is purely serial and you
know works first. Should do this anyway to satisfy
comment 2!

..4 Never lose sight of the programmer time -vs- run time
tradeoff. Some things just aren’t worth the effort for the
small speedup payoff! “R when you can, C when you must”

..5 Take modularising your code seriously — nothing like one
huge spaghetti function for killing ability to tackle
complex problems.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


12/32

Background GPUs Cloud

GPUs

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


13/32

Background GPUs Cloud

Introduction

• GPUs are extraordinarily parallel devices (upto 4, 992 cores
at present, Tesla K80)

• Usually programmed in C/C++ using CUDA
• Interfaces available in Python, R, Julia, …
• Main mode of operation is SIMD

• can now launch multiple independent kernels

• GPUs cannot directly access the system memory: you must
copy data on and results off

• CUDA 6 added ‘unified memory’, but this just hides what is
happening anyway

Today: a code-free introduction to help you see whether your
problem can map naturally onto a GPU given a few simple
performance considerations.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


14/32

Background GPUs Cloud

Highly simplified GPU architecture

Device

Multiprocessor

} c
o
r
e
s

16K Shared Memory

Multiprocessor

} c
o
r
e
s

16K Shared Memory

Multiprocessor

} c
o
r
e
s

16K Shared Memory

Multiprocessor

} c
o
r
e
s

16K Shared Memory

256MB Global Memory

nVidia GeForce 8600M GT

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


15/32

Background GPUs Cloud

Highly simplified GPU architecture

Device

2GB Global memory

nVidia GeForce GT 750M

Multiprocessor

c
o
r
e
s

48K Shared Memory

Multiprocessor

c
o
r
e
s

48K Shared Memory

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


16/32

Background GPUs Cloud

Highly simplified GPU architecture
Device

nVidia GTK210 GPU

Multiprocessor

c
o
r
e
s

128K Sh Memory

Multiprocessor

c
o
r
e
s

128K Sh Memory

Multiprocessor

c
o
r
e
s

128K Sh Memory

Multiprocessor

c
o
r
e
s

128K Sh Memory

Multiprocessor

c
o
r
e
s

128K Sh Memory

Multiprocessor

c
o
r
e
s

128K Sh Memory

Multiprocessor

c
o
r
e
s

128K Sh Memory

Multiprocessor

c
o
r
e
s

128K Sh Memory

Multiprocessor

c
o
r
e
s

128K Sh Memory

Multiprocessor

c
o
r
e
s

128K Sh Memory

Multiprocessor

c
o
r
e
s

128K Sh Memory

Multiprocessor

c
o
r
e
s

128K Sh Memory

Multiprocessor

c
o
r
e
s

128K Sh Memory

Multiprocessor

c
o
r
e
s

128K Sh Memory

Multiprocessor

c
o
r
e
s

128K Sh Memory

Multiprocessor

c
o
r
e
s

128K Sh Memory

12GB Global memory

Multiprocessor

c
o
r
e
s

128K Sh Memory

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


17/32

Background GPUs Cloud

CUDA Concepts (Oversimplified, cf dynamic
parallelism)

• Kernel: a C function which is flagged to be run on a CUDA
capable device

• A kernel is executed on the core of a multiprocessor inside
a thread. A thread can be thought of as just an index j ∈ N.
V Loosely: a index of cores in multiprocessors

• At any given time, a block of threads is executed on a
multiprocessor. A block can be thought of as just an index
i ∈ N. V Loosely: an index of multiprocessors in devices

• Together, (i, j) corresponds to exactly one kernel running
on a core of a single multiprocessor.

i.e. Very simplistically speaking, think of how to parallelize
your problem by how to split it into identical chunks indexed
by a pair (i, j) ∈ N × N

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


18/32

Background GPUs Cloud

Block 0 Block 1 Block 2 Block 3
CUDA Program

2 Multiprocessor GPU

Block 0

Multiprocessor 1

Block 2

Block 1

Block 3

Multiprocessor 2Threads

Core 1 Core 2 Core 3 Core 4
Multiprocessor 1 (4 core)

a=x[0*50+0]

a=x[1*50+2]

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


19/32

Background GPUs Cloud

Some CUDA Rules

• There is a cap on the maximum number of blocks and
threads (though both can – and should – exceed the
physical number of multiprocessors and cores)

• Can’t assume threads will complete in the order you index
them.

• Can’t assume blocks will complete in the order you index
them.

• To deal with execution order dependency either:
• run dependent items in the same block (__syncthreads(),
beyond talk scope)

• split into kernels which you call consecutively from C

• Don’t write to the same memory location from different
threads (proviso: shared memory, beyond talk scope)

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


20/32

Background GPUs Cloud

Performance Considerations

..1 Memory accesses are slow compared to the cores. Usually
want many more total threads than cores to mask this.

..2 Conditional sections of an algorithm can quickly kill
performance.

..3 Random or disorganised memory accesses will make a GPU
under-perform a CPU!

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


21/32

Background GPUs Cloud

Simple Performance Consideration #1

• Number of blocks can exceed number of multiprocessors
• Number of threads can exceed number of cores per
multiprocessor

Worst case, at least both should equal the physical device sizes
or else cores sit idle.
But in reality, rule of thumb is ensure the thread figure exceeds
the number of cores per multiprocessor for performance
reasons1.
nVidia provide an ‘occupancy calculator’ in the form of an
Excel spreadsheet which allows you to tune how many threads
to choose for any given problem.
http://developer.download.nvidia.com/compute/cuda/
CUDA_Occupancy_calculator.xls

1this is a simplification ... ∃ occasions this is not true.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls


22/32

Background GPUs Cloud

= Global memory access
=> Execution stall!

Global memory accesses are slow, 
so a core will stall when a request is 
made.

But, if # threads > # cores then 
another thread will be interleaved 
and run until the memory request is 
fulfilled and the first thread can run 
again.

Thread A Thread B Thread C

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


23/32

Background GPUs Cloud

Simple Performance Consideration #2

Cores1 2 3 4 5 6 7 8

if(x[thrd_id]>0) {

...

...

} else {

...

}

T T F T F F T F

Threads execute in lock-step on the cores of a 
multiprocessor, so beware of very divergent code ... best 
to use block indices to separate highly divergent paths.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


24/32

Background GPUs Cloud

Simple Performance Consideration #3

The multiprocessors are able to pull in ranges of memory in
large blocks rather than element by element as each core
requires it (note also, due to the lock-step all cores will be
ready for memory access at the same time).
When a floating point number is requested from memory, that
number and the following 3 are loaded (128-bit memory bus) …
whether you asked for them or not!

Thus, if consecutive threads require consecutive regions of
memory, there are a quarter the number of memory
transactions required: coalescedmemory access.
If an algorithm requires random or disorganised memory
access then this can reduce performance at least 4 fold
compared to the intended GPU programming model.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


24/32

Background GPUs Cloud

Simple Performance Consideration #3

The multiprocessors are able to pull in ranges of memory in
large blocks rather than element by element as each core
requires it (note also, due to the lock-step all cores will be
ready for memory access at the same time).
When a floating point number is requested from memory, that
number and the following 3 are loaded (128-bit memory bus) …
whether you asked for them or not!
Thus, if consecutive threads require consecutive regions of
memory, there are a quarter the number of memory
transactions required: coalescedmemory access.
If an algorithm requires random or disorganised memory
access then this can reduce performance at least 4 fold
compared to the intended GPU programming model.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


25/32

Background GPUs Cloud

GPUs without CUDA/C/C++

Don’t forget that there are many out-of-the-box solutions
which enable you to leverage GPU power without writing a
single line of a GPU kernel.

• R
• gputools, gmatrix, HiPLARM
• cudaBayesreg, WideLM, rpud (£)
• Rth, RCUDA

• Python: theano, NumbaPro, PyCUDA, gnumpy
• C++: Thrust, NVBIO
• C: cuBLAS, cuSPARSE, cuRAND, cuDNN, cuFFT, Magma
• Diverse options like caffe (command
line/C++/python/Matlab)

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/
https://cran.r-project.org/web/packages/gputools/
https://cran.r-project.org/web/packages/gmatrix/
https://cran.r-project.org/web/packages/HiPLARM/
https://cran.r-project.org/web/packages/cudaBayesreg/
https://cran.r-project.org/web/packages/WideLM/
http://www.r-tutor.com/gpu-computing
https://github.com/Rth-org/Rth
http://www.omegahat.org/RCUDA/


26/32

Background GPUs Cloud

For more …

This barely scratches the surface, but GPUs are arguably some
of the most powerful compute devices available today and well
worth the time investment (in my opinion).

To actually do direct GPU programming yourself, first learn C
very well. Then, hard to beat Mike Giles summer CUDA course
at University of Oxford:
https://people.maths.ox.ac.uk/gilesm/cuda/
£200 for academics, week long intensive course.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/
https://people.maths.ox.ac.uk/gilesm/cuda/


27/32

Background GPUs Cloud

Cloud

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


28/32

Background GPUs Cloud

Cloud — buzz-word alert!

By cloud, I mean an online service which allows users to create
and destroy virtual servers remotely without having to worry
about initial hardware and OS installation and where billing is
in very small increments (e.g. hours).
There are several cloud providers, including:

• Amazon EC2
• http://aws.amazon.com/

• Digital Ocean
• http://www.digitalocean.com/

• Google Compute Engine
• http://cloud.google.com/

• Rackspace Cloud Servers
• http://www.rackspace.co.uk/

• Windows Azure VMs
• http://www.windowsazure.com/

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/
http://aws.amazon.com/
http://www.digitalocean.com/
http://cloud.google.com/
http://www.rackspace.co.uk/
http://www.windowsazure.com/


29/32

Background GPUs Cloud

Why talk about Amazon today?

Today, AWS is the only the service which ticks all the following
(subjectively) important boxes for scientific HPC, though this
is a fastmoving business:

• Repository for community development of images so users
can boot ready-to-run machines with more than just bare
operating system (bit like package system in R).

• A permanent storage medium for each machine which can
persist independently of the running state of the server.

• Billing which suspends while the server is stopped, but
where the above persistent storage remains alive.

• A free tier of instances so everyone can try it without cost.
• Everything from micro instances to the current state of the
art in HPC, including machines with nVidia GPUs for
CUDA support. (See also benchmarks)

• A ‘stock-market’ for unused compute capacity, enabling
heavily discounted compute jobs.

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/
http://cloudharmony.com/benchmarks/


30/32

Background GPUs Cloud

Amazon Web Services (AWS)

Amazon used to buy in huge server capacity to keep their
website up just for the Christmas shopping spree … rest of the
year large parts of server farm sat mostly idle.
Launched 2006. By December 2014, 1, 400, 000 servers
operating in 28 data centres across 7 countries:

• Dublin, Ireland
• Frankfurt, Germany
• North Virginia, United States
• Oregon, United States
• Northern California, United States
• Singapore, Republic of Singapore
• Tokyo, Japan
• Sydney, Australia
• São Paulo, Brazil

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


31/32

Background GPUs Cloud

AWS jargon

• EC2 (Elastic Compute Cloud)
• is the service which enables launching virtual servers

• Instance
• a virtual server running on EC2

• S3 (Simple Storage Service)
• for resiliant storage of data independent of instances

• AMI (Amazon Machine Image)
• a bundle of operating system and pre-loaded applications
to boot on an instance

• Volume
• a cloud ‘hard drive’ which is attached to an instance

• Spot instance
• an ephemeral instance whose price follows the Amazon
‘stock-market’ price

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/


32/32

Background GPUs Cloud

Remainder of talk is a live demo

What could possibly go wrong?

• Intro to RStudio AMI
http://www.louisaslett.com/RStudioAMI/

• Tour of EC2 console, including cryptographic login setup

• Bid on spot instance

• Docker containers
• RStudio
• Jupyter (Julia)

http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/
http://www.louisaslett.com/RStudioAMI/

	Background
	GPUs
	Cloud

