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Outline

1 Existing Statistical Methodology
• Survey of literature using cryptographic methods with
(mostly) standard statistics methodology.

2 Machine Learning
• Homomorphic encryption.
• Novel variant on random forests (and naïve Bayes).

3 Arbitrary Bayesian Models
• Homomorphic secret sharing.
• Theoretically arbitrary low-dimensional model fitting on
securely pooled data. Model security also guaranteed.
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Motivation

Security in statistics and machine learning applications is a
growing concern:

• computing in a ‘hostile’ environment (e.g. cloud
computing);

• donation of sensitive/personal data (e.g. medical/genetic
studies);

• complex models on constrained devices (e.g. smart
watches)

• running confidential algorithms on confidential data
(e.g. engineering reliability)
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5/64

Existing Statistical Methodology Machine Learning Arbitrary Bayesian Models

Existing Statistical Methodology

A lightning tour of some of the encrypted statistics literature.

We will see the majority of work so far is existing algorithms
simply refactored to run homomorphically.

Call to arms! Statisticians can develop novel approaches to
approximate otherwise currently intractable statistical
techniques.
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Graepel et al. (2012) Best name! ‘ML Confidential’

Assume know which observations are same class, so separated
operations.

Linear means classifier, binary b ∈ {−1,+1}. Let sy =
∑

i∈Iy
xi

µy = n−1
y sy w = µ+1 − µ−1

c = (µ+1 − µ−1)T (µ+1 − µ−1)/2

}
predict: sign(wTx⋆ − c)

Transform:

w̃ = n−1s+1 − n+1s−1

= n+1n−1w

c̃ = (m−1s+1 −m+1s−1)T (m−1s+1 +m+1s−1)
= 2n+1n−1c

predict: sign(2n+1n−1w̃
Tx⋆ − c̃)

Similar approach for Fisher’s Linear Discriminant Classifier
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Wu& Haven (2012) : Linear Regression (low-d)

Observe that mean vector and covariance matrix of design
matrix can be computed with low multiplicative depth.

Σ = 1
n2

(
nXTX − (nµ)(nµ)T

)
However, store numerator and denominator of fraction as
separate ciphertexts.

They propose Cramer’s rule for inverse:

(XTX)−1 = 1
det(XTX)

Adj(XTX)

Problem is explosion in multiplicative depth. Consider max 5
dimensions.

Implement Chinese Remainder Theorem for SIMD evaluation
of matrix product.
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Esperança, Aslett & Holmes (2017)

We propose accelerated gradient descent methods. For linear
regression, this can be written:

β[k] =
k∑

n=1
(−1)n+1

(
k

k − n

)
δn(XTX)n−1XT y

Prove this is oscillatory =⇒ van Wijngaarden transformation
can be applied.

Competitive with Nesterov acceleration and, more importantly,
for k steps we prove

max depth std gradient descent = 2k
max depth van Wijngaarden = 2k + 1
max depth Nesterov = 3k

For low fixed multiplicative depth, vWT often outperforms
Nesterov (factor of 2 in error norm for very low depth).
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Esperança, Aslett & Holmes (2017) (contd.)

m̊(x) =
∑2d−1−1

i=0 aix
i ∈ Rt

n = max{i : ai > 0}

Lemma (FV parameter requirements for GD)
If data is represented in binary decomposed polynomial form, then
after running the ELS-GD algorithm the degree and coefficient
value of the encrypted regression coefficients is bound by:

deg(β̃[k]) ≤ max{4n+ deg(β̃[k−1]), (4k − 1)n}

where deg(β[1]) ≤ 3n and n ≡ (ϕ+ 1) log2(10);

and ||β̃[k]||∞ ≤ (4n+ (n+ 1)2)NP ||β̃[k−1]||∞
+ (4k − 3)n(n+ 1)N

where ||β̃[1]||∞ ≤ n(n+ 1)N
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Esperança, Aslett & Holmes (2017) (contd.)

Tested up to 25 dimensions.

Real examples:

Mood Stability Prostate Cancer
N 28 97
P 2 8
||β̂||∞ 0.04 0.26

Memory 15 MB 3.5 GB
Time 12 secs 30 mins
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Gascón et al. (2017)

Multiparty computing version of linear regression problem:
different variables held by different parties (ie vertially
partitioned design matrix). Uses new fixed-point precision
conjugate gradient descent. algorithm.

Achieves substantial performance improvement in computing
inner product compared to standard MPC approach using OT.

N > 1, 000, 000, P = 100 fitted in under 1 hour.

Work has led to software suite for MPC algorithms.
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Lauter et al. (2014)

Pearson goodness-of-fit, linkage disequilibrium, EM-algorithm
for haplotyping and Cochran-Armitage testing for genomic
data. Main contribution is data representation allowing
algorithms to be recast.

Genotype encoding: (AA,Aa, aa) usually represented (0, 1, 2).
Instead, each locus for each person encoded:

AA (value 0) : x0 ← Enc(kp, 1), x1 ← Enc(kp, 0), x2 ← Enc(kp, 0)
Aa (value 1) : x0 ← Enc(kp, 0), x1 ← Enc(kp, 1), x2 ← Enc(kp, 0)
aa (value 2) : x0 ← Enc(kp, 0), x1 ← Enc(kp, 0), x2 ← Enc(kp, 1)

missing : x0 ← Enc(kp, 0), x1 ← Enc(kp, 0), x2 ← Enc(kp, 0)

Phenotype encoding:

unaffected (value 0) : z0 ← Enc(kp, 1), z1 ← Enc(kp, 0)
affected (value 1) : z0 ← Enc(kp, 0), z1 ← Enc(kp, 1)

missing : z0 ← Enc(kp, 0), z1 ← Enc(kp, 0)
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Bost et al. (2015)

Focus on encrypted prediction only (assume model is already
trained).

• Hyperplane decision
• Naïve Bayes
• Decision Trees

Main contribution is a communication intensive method to
compute

arg max
i
{x1, . . . , xk}

using only Paillier (1999),M = ZN ,FM = {+}, N ≈ 21024, and
Goldwasser & Micali (1982),M = F2,FM = {+}.

Involves an information theoretically secure method to switch
between schemes.
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Machine Learning
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Machine Learning Encrypted?

Lots of constraints! Are traditional machine learning techniques
out of reach to run on encrypted data? We’ve looked at a
semi-parametric naïve Bayes and a variant of random forests.

So, want to build a random forest on encrypted data … but,
recall from part I:

• No comparisons possible to evaluate splits
• No max possible to find highest class vote
• No division possible to do average votes
• …

Thus random forests (and other methods) need to be tailored
for encrypted computation. This is where statistics and
machine learning community can get involved!
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Completely Random Forests (CRFs) — Data encoding

1

xij � R 0 0 0 01
B quantiles

2 Then,

I(xij ≤ bl) =
l∑

k=1
xijk and I(xij > bl) =

B∑
k=l+1

xijk

3 Similarly encode response category c, yi → yic ∈ {0, 1}.
4 Build a decision tree selecting variable j and split point bl

completely at random to a fixed depth.
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CRFs — Tree ‘fitting’, I

Exactly one terminal leaf indicator evaluates to 1, encrypted.
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CRFs — Tree ‘fitting’, I

xij2 xij3

xij1

Exactly one terminal leaf indicator evaluates to 1, encrypted.
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CRFs — Tree ‘fitting’, I

xij2 xij3

xij1

� b(j2)
l2

> b(j2)
l2

� b(j3)
l3

> b(j3)
l3

� b(j1)
l1 > b(j1)

l1

Exactly one terminal leaf indicator evaluates to 1, encrypted.
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CRFs — Tree ‘fitting’, I

xij2 xij3

xij1

� b(j2)
l2

> b(j2)
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l3
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� � l1�
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�
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CRFs — Tree ‘fitting’, I

xij2 xij3

xij1

� b(j2)
l2

> b(j2)
l2

� b(j3)
l3

> b(j3)
l3

� b(j1)
l1 > b(j1)

l1

� l1�

k=1

xij1k

� � l1�

k=1

xij1k

�� l2�

k=1

xij2k

� �

�
B�

k=l2+1

xij2k

�

�

Exactly one terminal leaf indicator evaluates to 1, encrypted.
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CRFs — Tree ‘fitting’, II

xij2

xij1

� b(j2)
l2

> b(j2)
l2

� b(j1)
l1

� l1�

k=1

xij1k

� � l1�

k=1

xij1k

�� l2�

k=1

xij2k

� �

�
B�

k=l2+1

xij2k

�

�
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CRFs — Tree ‘fitting’, II

xij2

xij1

� b(j2)
l2

> b(j2)
l2

� b(j1)
l1

� l1�

k=1

xij1k

� � l1�

k=1

xij1k

�� l2�

k=1

xij2k

� �

�
B�

k=l2+1

xij2k

�

��ic = yic �ic = yic

NB Must evaluate all branches and categories as blindfold.
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CRFs — Prediction

Prediction involves:

• evaluating a new observation through all branches;
• taking product with corresponding vote totals for each
class;

• summing across trees and across leaves to get total votes
for each class.

Random Forests usually use:

1 single vote per tree (requires comparison to find max)
2 relative class frequencies (requires division and [0, 1]
value)

But here trees contribute raw ‘vote’ totals to the prediction:
confused leaves with many votes can overwhealm certain ones
with few.
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CRFs — Raw votes problem

xij2 xij3

xij1

� b(j2)
l2

> b(j2)
l2

� b(j3)
l3

> b(j3)
l3

� b(j1)
l1 > b(j1)

l1

class A B C
votes,

�

i

�ic 78 7 15
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CRFs — Raw votes problem

xij2 xij3

xij1

� b(j2)
l2

> b(j2)
l2

� b(j3)
l3

> b(j3)
l3

� b(j1)
l1 > b(j1)

l1

class A B C
� overall votes,

�

i

�ic 1085 1087 1030
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Relative class frequencies

Let νc be the number of votes for class c in a leaf. The relative
class frequency contribution should be:

νc∑
c νc

But, this belongs to [0, 1] which we can’t represent and involves
division.

Target equivalently:

νc

⌊
N∑
c νc

⌉
where N is the number of training observations.

• By construction
∑

c νc ≤ N , so 0 ≤
∑

c
νc

N ≤ 1

• Recall,X ∼ Geometric(p) =⇒ E[X] = p−1
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Stochastic fraction estimate (I)

Thus, an unbiased approximation to fraction is draw from
Geometric distribution with probability

∑
c

νc

N .

Not really helping … any better than division?!

Crucial observation: νc :=
∑N

i=1 νic where νic ∈ {0, 1} ∀ i, c.

(recall νic is 1 if training obs. i was of class c and fell in this leaf
of the decision tree … leaf indices supressed)

=⇒ blind sampling with replacement from
{
∑

c νic : i = 1, . . . , N} will produce an encrypted 1 with

probability exactly
∑

c
νc

N .

=⇒ can blind sample the latent bernoulli process underlying

a Geometric
(
p =

∑
c

νc

N

)
random variable.
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Stochastic fraction estimate (II)

New problem! count number of leading zeros in an encrypted
Bernoulli process.

Inspiration from CPU hardware algorithm for renormalising
the mantissa of an IEEE floating point number.

Let ξ1, . . . , ξM be a resampled vector (ξi =
∑

c ηcj , some j) and
assumeM is a power of 2.

1 For l ∈ {0, . . . , log2(M)− 1}:
• Set ξi = ξi ∨ ξi−2l = ξi + ξi−2l − ξiξi−2l ∀ 2l + 1 ≤ i ≤M

2 The number of leading zeros isM −
∑M

i=1 ξi

Corresponds to increasing power of 2 bit-shifts OR’d with itself,
all computable encrypted.

=⇒
⌊

N∑
c νc

⌉
≈M −

M∑
i=1

ξi + 1
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Stochastic fraction estimate (III)

CPU hardware algorithm for mantissa normalisation

0

0 0

1 1 0 0

0 1 0 10 1 0 0

0 0 1 0 1 1 0

0 0 1 0 1 1

l = 0

l = 1

l = 2 0 0 1 0

0 0 1 1 1 1 1 1

0 0� 1 1 1 1 1 0

� 0 0 1 1 1 1 1 1

� � M�
�

= 2
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Stochastic fraction estimate (IV)

Bias

Clearly, since blindfolded can’t sample until a 1 observed, so
choose a fixedM and accept small bias.

The shrinkage is mild unless there are fewer than N
M

observations in the leaf, in which case the shrinkage is more
extreme: this is desirable because it shrinks the influence of
underpopulated leaves.

e.g. N = 1000,M = 32 =⇒ heavy shrinkage for leaves with
< 31 observations.

Computational consideration

Multiplicative depth of this algorithm isM , which must be
factored into tree building.
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choose a fixedM and accept celebrate small bias shrinkage.

The shrinkage is mild unless there are fewer than N
M

observations in the leaf, in which case the shrinkage is more
extreme: this is desirable because it shrinks the influence of
underpopulated leaves.

e.g. N = 1000,M = 32 =⇒ heavy shrinkage for leaves with
< 31 observations.

Computational consideration

Multiplicative depth of this algorithm isM , which must be
factored into tree building.
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Theoretical homomorphic scheme requirements

To build a forest of trees with L levels, the homomorphic
encryption scheme must support:

• depth Lmultiplications for tree building
• depth L+M for stochastic fraction adjustment
• depth 2L+M for building, adjustment and prediction.

Furthermore, for the current generation of Ring Learning With
Errors encryption schemes where the message space is a
polynomial ring, it must support coefficients up to
T max{

∑
i yic : c = 1, . . . , |C|}.
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Results (I)
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Results (II)
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Stochastic fraction effect (best)
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Stochastic fraction effect (worst)
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Computational considerations

Note that CRFs are parallelisable right down to the individual
observation, which helps with ameliorating the cost of
encrypted computation.

Wisconsin data (N = 547)

• Launched
2× 18 servers × 32 cores = 1, 152 CPU
core cluster on Amazon EC2
⇒ 576 Dublin & 576 São Paulo

• Fit 50 trees in Dublin, 50 in São Paulo
• unique set.seed() for each region

• Data split into 17 shards of 32 obs + 1
shard 3 obs⇒ 1 datum per core!

• Reduction sum of votes in each region and
combine regions⇒ 100 tree forest

1h 36m

US$ 23.86
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Arbitrary Bayesian Models
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Perspectives on “privacy”

• Differential privacy
• on outcomes of ‘statistical queries’
• guarantees of privacy for individual observations

• Data privacy
• at rest
• during fitting
• data pooling

• Model privacy
• prior distributions
• model formulation
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The perspective for today …

• Eve has a private model, including prior information
which may itself be private.

• Cain and Abel have private data which is relevant to the
fitting of Eve’s model.

Can Eve fit a model, pooling data from Cain and Abel without
observing their raw data and without revealing her model and
prior information? Abel also doesn’t trust Cain …

�(· | �)
�(�)

{xi = (xi1, . . . , xid)}n1

i=1

{xi = (xi1, . . . , xid)}Ni=n1+1
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✗ Likelihood restricted to low 
degree polynomials
✗ Can only handle very small N due 
to multiplicative depth
✗ MAP/posterior? How? MCMC?

✗ Who holds secret key?
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Eve, Cain & Abel
�(· | �)
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Approximate Bayesian Computation

1 Sample ψj ∼ π(ψ), j ∈ {1, . . . ,m}
2 For each ψj , simulate a dataset Yj from π(· |ψj) of the
same size, N , asX.

3 Accept ψj if d(S(X), S(Yj)) < ε.

Where S(·) is some (vector) of summary statistics; d(·, ·) is a
distance metric; and ε is a user defined threshold.

When S(·) is sufficient and ε→ 0, this procedure will converge
to the usual Bayesian posterior.

Benefit: Eve can do steps 1 & 2 and encrypt her simulated
data, eliminating need for function privacy.

Problems: d(·, ·) can only be low degree polynomials;
Must compute S(·) secretly for Cain and Abel’s pooled data;
Naïve ABC performs poorly & choosing ε blindfolded.
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Naïve encrypted ABC (I) – Eve & data owners 1, . . . , P

1 Eve samples ψj ∼ π(ψ), j ∈ {1, . . . ,m}; simulates datasets
Yj of size N from π(· |ψj); and computes S(Yj).

2 Eve computes HSS shares S⋆p(Yj), p ∈ {1, . . . , P + 1};
• send S⋆p(Yj) to data owner p
• retain S⋆P +1(Yj)

3 Data owners k ∈ {1, . . . , P} create HSS shares S⋆p(Xk),
p ∈ {1, . . . , P + 1}

• send S⋆p(Xk) to data owner p (retaining when p = k)
• send S⋆P +1(Xk) to Eve

4 All compute S⋆p(X) = S̃ (
∪

k S
⋆p(Xk)), where S̃(·) is a

homomorphically computable pooling function.

5 All compute d⋆p
j = d (S⋆p(X), S⋆p(Yj)), where d(·) is a

homomorphically computable distance metric.
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3 Data owners k ∈ {1, . . . , P} create HSS shares S⋆p(Xk),
p ∈ {1, . . . , P + 1}

• send S⋆p(Xk) to data owner p (retaining when p = k)
• send S⋆P +1(Xk) to Eve

4 All compute S⋆p(X) = S̃ (
∪

k S
⋆p(Xk)), where S̃(·) is a

homomorphically computable pooling function.

5 All compute d⋆p
j = d (S⋆p(X), S⋆p(Yj)), where d(·) is a

homomorphically computable distance metric.
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Naïve encrypted ABC (II) – Eve & data owners 1, . . . , P

6 All send their shares, d⋆p
j , to a randomly chosen data

owner k ∈ 1, . . . , P

7 Data owner k reconstructs dj = Dec(d⋆1
j , . . . , d

⋆P +1
j )

8 Data owner k sends to Eve a list of those indices j such
that dj < ε.
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Naïve encrypted ABC (III) – in pictures

�(· | �)

�(�) X1 = {xi = (xi1, . . . , xid)}n1

i=1

X2 = {xi = (xi1, . . . , xid)}Ni=n1+1

S�(X) = S̃ (X�
1 , X�

2 , S�(X1), S
�(X2))

{�j}m
j=1

{S�(Yj)}m
j=1

d�
j = d(S�(Yj), S

�(X))

dj = Dec(d�Eve
j , d�Cain

j , d�Abel
j )

J = {j : dj < �}

Accept {�j : j � J }
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Points to note

• Samples ψj are never seen by Cain and Abel

• Eve learns only an accept/reject
• Final distances between summary statistics decrypted by
Cain or Abel

• Cain and Abel do not learn about each other’s data
• only see composite distance between pooled summary
stats and Eve’s simulation

• can make distances information theoretically secure by
adding random values generated by Cain, Abel and Eve

• BUT, Cain and Abel do have to know S(·), which in most
ABC settings is model dependent =⇒ risk to Eve
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Obstacles to cryptographic ABC

• Homomorphically computable pooling of summary
statistics

• Summary statistics that don’t reveal model

• Homomorphically computable distance metric

• Blindfold selection of ε

• Propose using ABC-PMC/SMC, with distance chosen to
retain α% of samples instead. Eve then uses accepted ψj on
step t to propose step t+ 1 and repeat algorithm.

• Standard idea — details omited.
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Collection of Coarse Random Marginals (CCRM)

Construct in the manner of a decision forest:

• Grow T trees, each to predetermined fixed depth L
• Choose variable v ∈ {1, . . . , d} uniformly at random
• Each split point uniformly at random in range of x·v

• Thus Cain and Abel must provide range of each variable in
the data, though this range need not be tight

• e.g. release (mini xiv + η,maxi xiv + η) for η ∼ N(0, σ2)
with σ2 chosen not to exclude too large a range

• s = S(·) is then the counts of observations in each
terminal leaf

• vector of T2L counts
• S̃(·) is then simply vector addition

• Define

d(S(X), S(Yj)) =
T 2L∑
i=1

(
sX

i − s
Yj

i

)2
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Collection of Coarse Random Marginals (CCRM)

2.0

2.5

3.0

3.5

4.0

4.5

2 4 6
x1

x 2



44/64

Existing Statistical Methodology Machine Learning Arbitrary Bayesian Models

Collection of Coarse Random Marginals (CCRM)

2.0

2.5

3.0

3.5

4.0

4.5

2 4 6
x1

x 2



44/64

Existing Statistical Methodology Machine Learning Arbitrary Bayesian Models

Collection of Coarse Random Marginals (CCRM)

2.0

2.5

3.0

3.5

4.0

4.5

2 4 6
x1

x 2



44/64

Existing Statistical Methodology Machine Learning Arbitrary Bayesian Models

Collection of Coarse Random Marginals (CCRM)

2.0

2.5

3.0

3.5

4.0

4.5

2 4 6
x1

x 2



44/64

Existing Statistical Methodology Machine Learning Arbitrary Bayesian Models

Collection of Coarse Random Marginals (CCRM)

2.0

2.5

3.0

3.5

4.0

4.5

2 4 6
x1

x 2



44/64

Existing Statistical Methodology Machine Learning Arbitrary Bayesian Models

Collection of Coarse Random Marginals (CCRM)

2.0

2.5

3.0

3.5

4.0

4.5

2 4 6
x1

x 2



44/64

Existing Statistical Methodology Machine Learning Arbitrary Bayesian Models

Collection of Coarse Random Marginals (CCRM)

2.0

2.5

3.0

3.5

4.0

4.5

2 4 6
x1

x 2



44/64

Existing Statistical Methodology Machine Learning Arbitrary Bayesian Models

Collection of Coarse Random Marginals (CCRM)

2.0

2.5

3.0

3.5

4.0

4.5

2 4 6
x1

x 2



44/64

Existing Statistical Methodology Machine Learning Arbitrary Bayesian Models

Collection of Coarse Random Marginals (CCRM)
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CCRM solutions

• Homomorphically computable pooling of summary
statistics

• simple vector addition

• Summary statistics that don’t reveal model
• CCRM is completely random, grown the same way for
all models and data sets. Only weak information about
range of each variable leaked.

• Homomorphically computable distance metric
• sum of squared differences
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Variance of distance metric per CRM

Lemma Let the random variable V be multinomially distributed
with success probabilities p = (p1, . . . , pk) for n trials. Then,

Var
(

k∑
i=1

(Vi − ci)2
)

=
k∑

i=1

[(nCn−4 − n2(n− 1)2)p4
i +

(
6nCn−3 + 2n(n− 1)(4ci − n)

)
p3

i

+
(
7n(n− 1)− n2 − 4cin(2n− 3)(1 + ci)

)
p2

i +
(
n+ 4cin(ci − 1)

)
pi

+
k∑

j=1
i ̸=j

[
− n(2ci − 1)(2cj − 1)pipj + 2n(n− 1)(2cj − 1)p2

i pj

+ 2n(n− 1)(2ci − 1)pip
2
j − 2n(n− 1)(2n− 3)p2

i p
2
j

]]

=⇒ can be used to weight random marginals differently.
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ABCDE: Approximate Bayesian Computation Done
Encrypted

Tying it all together:

• ABC-PMC/SMC

• Homomorphic Secret Sharing with data pooling

• CCRM summary statistic protecting model/prior privacy

• Pooled S(·) computable encrypted from multiple data
owners

• Distance computable encrypted and not learned by
modeller

• Variance of each CRM computable encrypted for weighting



48/64

Existing Statistical Methodology Machine Learning Arbitrary Bayesian Models

Selected connections in ABC literature

• Bernton, E., Jacob, P. E., Gerber, M., & Robert, C. P. (2017).
Inference in generative models using the Wasserstein
distance. arXiv:1701.05146.

• Gutmann, M. U., Dutta, R., Kaski, S., & Corander, J. (2017).
Likelihood-free inference via classification. Statistics and
Computing, 1-15.

• Fearnhead, P., & Prangle, D. (2012). Constructing
summary statistics for approximate Bayesian computation:
semi-automatic approximate Bayesian computation.
Journal of the Royal Statistical Society: Series B, 74(3),
419-474.
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Toy example

Super simple first example, 8-dimensional multivariate
Normal.

X ∼ N(µ = 0,Σ = I)
µi ∼ N(ηi, σ = 2)

where ηi chosen independently uniformly at random on the
interval [−1, 1] for repeated experiments.

• Simulate n = 1000 observations
• Range of all dimensions taken to be [−4, 4] for
construction of CCRM, without checking true range ofX

• Standard ABC used S(X) = (x̄1, . . . , x̄8)
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Toy example: 8D Normal, marginal quadratic loss
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Toy example: 8D Normal, marginal posterior σ
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Toy example: 8D Normal, marginal posterior σ
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Toy example: distance concordance
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Expected quadratic loss

Can understand lowest ABC error achievable without Monte
Carlo error:

E
[
(µ− µ̂)2 |T = t

]
= 1
|At|

∫
At

(
µ−

∫ ∞

−∞
θ P
(
S(x) = S(xobs) | da1, . . . , dat

)
π(dθ)

)2

because for 1-level CRMs:

P
(
S(x) = S(xobs) | da1, . . . , dat

)
=

t∏
k=1

(
n

mk

)
Fvk

(X < ak)mk(1− Fvk
(X < ak))n−mk

wheremk = #{i : xobs
i < ak}.
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Expected quadratic loss
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g-and-k distribution (Haynes et al. 1997)

Defined via inverse distribution function

F−1(x |A,B, g, k) =

A+B

[
1 + 0.8

1− exp
(
− gΦ−1(x)

)
1 + exp

(
− gΦ−1(x)

)] (1 + Φ−1(x)2)kΦ−1(x)

Following Allingham et al. (2009) and Fearnhead & Prangle
(2012), take:

• A = 3, B = 1, g = 2, k = 1
2

• simulate n = 10000 observations
• standard ABC uses the order statistics,
S(X) = (x(1), . . . , x(n))
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g-and-k: quadratic loss
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g-and-k: density plots
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g-and-k: density plots
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Tuberculosis Transmission (Tanaka et al. 2006)

Model of transmission of disease,

• ‘birth’ of new infections, rate α
• ‘death’ recovery or mortality of carrier, rate δ
• ‘mutation’ genotype of bacterium mutates within carrier,
rate θ (infinite-alleles assumption)

Xi(t) num infections type i at time t; G(t) num unique
genotypes.

• San Francisco tuberculosis data 1991/2, 473 samples (no
time)

• Fearnhead & Prangle (2012) transform(
α/(α+ δ + θ), δ/(α+ δ + θ)

)
• S(X) =

(
G(tend)/473, 1−

∑
i(X(tend)/473)2)
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Posterior samples
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These data contain no information on time, so, for k > 0, parameter values .α, δ, θ/ and
.kα, kδ, kθ/ give the same likelihood. We reparameterize to .a, d, θ/ where a=α=.α+δ+θ/ and
d =δ=.α+δ+θ/. The likelihood under this parameterization depends only on a and d. To reflect
prior ignorance of (a,d) we use the prior density π.a, d, θ/∝π.θ/ I.0!d !a/ I.a+d< 1/, where
π.θ/ is the marginal prior for θ that was used in Tanaka et al. (2006). The prior restriction d !a
avoids the need for simulations in which N.t/ = 10 000 is highly unlikely to occur. The other
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Fig. 3. ABC output for the tuberculosis application (every 1000th state is plotted): (a) comparison; (b) semi-
automatic ABC Semi-automatic ABC
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Theory (Sam Livingstone, UCL)

Proposition 1:

When d = 1, if ρT (S(x), S(y)) :=
∑T

k=1 ρ(Sk(x), Sk(y)) for some
discrepency ρ : R× R→ [0,∞) then

lim
T →∞

ρT (S(x), S(y))
T

a.s.−−→
∫ ∞

−∞
ρ(FX(z), FY (z))dz,

where FX and FY are the empirical cumulative distribution
functions for the data sets x1:n and y1:n respectively. In
particular

1 If ρT (S(x), S(y)) := ∥S(x)− S(y)∥1, then
T−1ρT (S(x), S(y)) a.s.−−→W1(x1:n, y1:n)

2 If ρT (S(x), S(y)) := ∥S(x)− S(y)∥22, then
T−1ρT (S(x), S(y)) a.s.−−→

∫∞
−∞(FX(z)− FY (z))2dz.
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Conclusions

• So far, this …
• Provides encrypted inference whilst preserving model,
prior and data privacy

• Enables pooling of multiple data owners
• Theoretically arbitrary low-dimensional models

• … but this is work-in-progress! Currently in progress:
• Method of ensuring differential privacy
• Encrypted software implementation of this scheme
• Best use of weights
• Fuller understanding of accuracy for CCRM choices
• Data as a service

• Perhaps also useful as a model independent summary
statistic for unencrypted ABC too?

• Questions, comments and discussion welcome!
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• So far, this …
• Provides encrypted inference whilst preserving model,
prior and data privacy

• Enables pooling of multiple data owners
• Theoretically arbitrary low-dimensional models

• … but this is work-in-progress! Currently in progress:
• Method of ensuring differential privacy
• Encrypted software implementation of this scheme
• Best use of weights
• Fuller understanding of accuracy for CCRM choices
• Data as a service

• Perhaps also useful as a model independent summary
statistic for unencrypted ABC too?

• Questions, comments and discussion welcome!

Thank you!
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Shameless plug! Knowledge Transfer Partnership

Forthcoming KTP associate job, based at Atom Bank working
with me and Camila Caiado at Durham University.

Jointly working with Computer Science KTP associate based at
Atom and working with Newcastle University.

Statistical modelling and encrypted statistics for mortgage
books.

Expected to advertise for an August – October 2018 start.
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