
1/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Cryptography & Statistics:
a short introduction

Louis J. M. Aslett (louis.aslett@durham.ac.uk)

Department of Mathematical Sciences
Durham University

Short Course, Part I

54th Gregynog Statistical
Conference
March 2018

mailto:louis.aslett@durham.ac.uk

2/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Outline

1 Standard Encryption
• Discussion of encryption concepts to set the scene.

2 Homomorphic Encryption
• Definition and high level discussion of homomorphic
schemes.

3 Fan & Vercauteren (2012)
• In depth look at this specific homomorphic encryption
scheme.

• Some further discussion on polynomial Chinese remainder
Theorem.

4 Software
• Discussion of implementation issues and
HomomorphicEncryption R package.

5 Multiparty Computing
• Homomorphic secret sharing with information theoretic
security levels.

3/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Standard Encryption

4/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Encryption basics (I)

Broadly speaking, an encryption scheme consists of:

• Unencrypted object, m ∈ M , referred to as a message.
• M is the message space.

• Encrypted version, c ∈ C, referred to as a cipher text.
• C is the cipher text space.

• Single (ks) ∈ Ks, or pair (ks, kp) ∈ Ks × Kp, of ‘keys’.
• Single key means secret key scheme;
• Pair of keys means public key scheme.

• Injective map, Enc : Kp × M → C.
• not necessarily a function, message can encrypt to
different cipher texts.

• Surjective function, Dec : Ks × C → M .
• Enc and Dec satisfy:

m = Dec(ks, Enc(kp, m)) ∀ m ∈ M

5/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Encryption basics (II)

Fundamental point is …

Enc(kp, m) � c

Easy

Hard without ks

Dec(ks, c) = m

The security level of an encryption scheme is the order of the
number of operations required to crack it (decrypt without ks).

Clearly, an upper bound on the security of an encryption
scheme is O(|Ks|), since a brute force attack which tries every
possible secret key will succeed.

6/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Concepts: Public key -vs- private key

Presumably public key schemes are always better: can just
choose not to distribute kp?

Not really. Public key schemes tend to:

• have much larger cipher texts than messages, so are space
inefficient.

• have greater computational cost, so are compute
inefficient.

• rely on complex mathematical constructions rather than
bit-level operations, so are hard to design custom
hardware for.

Hence, private key schemes still involved in almost all
cryptography, perhaps wrapped in a public key scheme. More
anon …

7/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Some common schemes (history, I)

• DES or Triple-DES. Secret-key scheme with 56-bit keys.
• DES: block cipher algorithm … bit fiddling transformations
which incorporate key.

• TDEA: Enc(., m) := Enc(ks3, Dec(ks2, Enc(ks1, m))).

• RSA. Famously the first practical public-key scheme, based
on prime number pairs.

• kp = (n, e) where:
• n = pq for p, q prime;
• e integer, 1 < e < ϕ(n), gcd(e, ϕ(n)) = 1
• Enc(kp, m) := me mod n

• ks = (d) where d = e−1 mod ϕ(n)
• Dec(ks, c) := cd mod n

Demo: 000_RSA.R

7/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Some common schemes (history, I)

• DES or Triple-DES. Secret-key scheme with 56-bit keys.
• DES: block cipher algorithm … bit fiddling transformations
which incorporate key.

• TDEA: Enc(., m) := Enc(ks3, Dec(ks2, Enc(ks1, m))).

• RSA. Famously the first practical public-key scheme, based
on prime number pairs.

• kp = (n, e) where:
• n = pq for p, q prime;
• e integer, 1 < e < ϕ(n), gcd(e, ϕ(n)) = 1
• Enc(kp, m) := me mod n

• ks = (d) where d = e−1 mod ϕ(n)
• Dec(ks, c) := cd mod n

Demo: 000_RSA.R

8/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Some common schemes (history, II)

PGP. Arguably first
encryption software popular
with regular users.

• Uses RSA to encrypt a
Triple-DES key, k′

s

• Uses Triple-DES to
encrypt a compressed
version of message

Enc(kp, m) =
(EncRSA(kp, k′

s), EncT DEA(k′
s, m))

Image by xaedes & jfreax & Acdx [CC BY-SA 3.0]

9/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Some common schemes (today)

• AES (Advanced Encryption Standard). Secret-key scheme
which has superceded DES and Triple-DES. Now an
industry standard.

• Use wifi with WPA2? All traffic encrypted with AES unless
you use TKIP for backwards compatability.

• Own an iPhone/iPad? The internal flash storage is
automatically encrypted using 256-bit AES.

• Most Intel CPUs since 2010 include hardware AES
acceleration.

• Required for US federal encryption since 2014.
• Brute force attacks on AES-128 require 2 billion years
running 1 trillion machines capable of testing 1 billion keys
a second.

• TLS/SSL. Every time you visit a secure website.
• RSA typically still used to verify identity and exchange
secret key.

• Triple-DES or AES used to encrypt the webpage content.

10/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Problem: ‘Brittle’ encryption

Most cryptography schemes are ‘brittle’ in that we can’t
manipulate the message contained in the mathematical vault:
must decrypt to compute, then encrypt the result. i.e. seems
only useful for shipping round static data!

Continue demo: 000_RSA.R

In other words, if

c1 := Enc(kp, m1)
c2 := Enc(kp, m2)

then in general, for a given function g(·, ·),�∃ f(·, ·) (not
requiring ks) such that

Dec(ks, f(c1, c2)) = g(m1, m2) ∀ m1, m2 ∈ M

Amazingly, for naïve RSA f(x, y) ≡ g(x, y) := x × y works.

10/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Problem: ‘Brittle’ encryption

Most cryptography schemes are ‘brittle’ in that we can’t
manipulate the message contained in the mathematical vault:
must decrypt to compute, then encrypt the result. i.e. seems
only useful for shipping round static data!

Continue demo: 000_RSA.R

In other words, if

c1 := Enc(kp, m1)
c2 := Enc(kp, m2)

then in general, for a given function g(·, ·),�∃ f(·, ·) (not
requiring ks) such that

Dec(ks, f(c1, c2)) = g(m1, m2) ∀ m1, m2 ∈ M

Amazingly, for naïve RSA f(x, y) ≡ g(x, y) := x × y works.

10/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Problem: ‘Brittle’ encryption

Most cryptography schemes are ‘brittle’ in that we can’t
manipulate the message contained in the mathematical vault:
must decrypt to compute, then encrypt the result. i.e. seems
only useful for shipping round static data!

Continue demo: 000_RSA.R

In other words, if

c1 := Enc(kp, m1)
c2 := Enc(kp, m2)

then in general, for a given function g(·, ·),�∃ f(·, ·) (not
requiring ks) such that

Dec(ks, f(c1, c2)) = g(m1, m2) ∀ m1, m2 ∈ M

Amazingly, for naïve RSA f(x, y) ≡ g(x, y) := x × y works.

11/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Still problems: RSA

RSA has a serious problem though: it is a completely
deterministic encryption scheme.

=⇒ easy to do ‘dictionary’ attacks if you know plausible data.

Not such a problem for e.g. PGP as Triple-DES secret key is
random (though security now reduced to length of Triple-DES
key).

BIG problem for statisticians! (e.g. binary classification)

Finish demo: 000_RSA.R

Fix: Real-world RSA implementations pad the message with
noise, but this breaks the nice computing property!

11/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Still problems: RSA

RSA has a serious problem though: it is a completely
deterministic encryption scheme.

=⇒ easy to do ‘dictionary’ attacks if you know plausible data.

Not such a problem for e.g. PGP as Triple-DES secret key is
random (though security now reduced to length of Triple-DES
key).

BIG problem for statisticians! (e.g. binary classification)

Finish demo: 000_RSA.R

Fix: Real-world RSA implementations pad the message with
noise, but this breaks the nice computing property!

11/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Still problems: RSA

RSA has a serious problem though: it is a completely
deterministic encryption scheme.

=⇒ easy to do ‘dictionary’ attacks if you know plausible data.

Not such a problem for e.g. PGP as Triple-DES secret key is
random (though security now reduced to length of Triple-DES
key).

BIG problem for statisticians! (e.g. binary classification)

Finish demo: 000_RSA.R

Fix: Real-world RSA implementations pad the message with
noise, but this breaks the nice computing property!

12/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Concept: Semantic security

Definition (Semantic security)
An encryption scheme is said to be semantically secure if
knowledge of the cipher text for some message has vanishingly
small probability of revealing further information about any
other encrypted message.

Informally: repeated encryption of same message renders
different and seemingly unrelated cipher texts with high
probability.

Why do we care? For private key scheme you don’t. However,
in a public key scheme where |M | ≪ |Ks| or probable messages
are known, an attacker can perform a ‘chosen plaintext attack’
if not semantically secure — simply encrypt using the public
key and compare.

13/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Homomorphic Encryption

14/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Homomorphic Encryption

Rivest et al. (1978) hypothesised that a limited set of functions
may be possible to compute encrypted: specifically those
involving addition and multiplication.

Definition (Homomorphic encryption scheme)
An encryption scheme is said to be homomorphic if there is a
set of operations ◦ ∈ FM acting in message space (such as
addition) that have corresponding operations ⋄ ∈ FC acting in
cipher text space satisfying the property:

Dec(ks, Enc(kp, m1) ⋄ Enc(kp, m2)) = m1 ◦ m2 ∀ m1, m2 ∈ M

A scheme is fully homomorphic if FM = {+, ×} and an arbitrary
number of such operations are possible.

The first fully homomorphic scheme was not found until
Gentry (2009)

15/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Homomorphic Encryption

Definition (Homomorphic encryption scheme)
An encryption scheme is said to be homomorphic if there is a
set of operations ◦ ∈ FM acting in message space (such as
addition) that have corresponding operations ⋄ ∈ FC acting in
cipher text space satisfying the property:

Dec(ks, Enc(kp, m1) ⋄ Enc(kp, m2)) = m1 ◦ m2 ∀ m1, m2 ∈ M

+
m1 m2 m1 +m2

15/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Homomorphic Encryption

Definition (Homomorphic encryption scheme)
An encryption scheme is said to be homomorphic if there is a
set of operations ◦ ∈ FM acting in message space (such as
addition) that have corresponding operations ⋄ ∈ FC acting in
cipher text space satisfying the property:

Dec(ks, Enc(kp, m1) ⋄ Enc(kp, m2)) = m1 ◦ m2 ∀ m1, m2 ∈ M

+
m1 m2 m1 +m2

c1 c2

Enc(kp, ·)

15/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Homomorphic Encryption

Definition (Homomorphic encryption scheme)
An encryption scheme is said to be homomorphic if there is a
set of operations ◦ ∈ FM acting in message space (such as
addition) that have corresponding operations ⋄ ∈ FC acting in
cipher text space satisfying the property:

Dec(ks, Enc(kp, m1) ⋄ Enc(kp, m2)) = m1 ◦ m2 ∀ m1, m2 ∈ M

+
m1 m2 m1 +m2

c1 c2

Enc(kp, ·)

�
c1 � c2

Dec(ks, ·)

15/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Homomorphic Encryption

Definition (Homomorphic encryption scheme)
An encryption scheme is said to be homomorphic if there is a
set of operations ◦ ∈ FM acting in message space (such as
addition) that have corresponding operations ⋄ ∈ FC acting in
cipher text space satisfying the property:

Dec(ks, Enc(kp, m1) ⋄ Enc(kp, m2)) = m1 ◦ m2 ∀ m1, m2 ∈ M

m1 m2 m1 +m2

c1 c2

Enc(kp, ·)

�
c1 � c2

Dec(ks, ·)

16/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Homomorphic + Semantic Security ̸= Homomorphism

Note, the name is inspired by the definition of a
homomorphism between groups.

Definition (Group homomorphism)
Given two groups (G, ◦) and (H, ⋄), a group homomorphism from
(G, ◦) to (H, ⋄) is a function f : G → H such that ∀ u, v ∈ G,

f(u ◦ v) = f(u) ⋄ f(v)

But, if f() is encryption, then homomorphic encryption is
usually not a group homomorphism due to semantic security!

i.e.
f−1(f(u ◦ v)) = f−1(f(u) ⋄ f(v))

17/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

RSA as a homomorphic scheme

We can see now why RSA had the multiplicative homomorphic
property.

FM = {×}, FC = {×}

Enc(kp, m1) × Enc(kp, m2) = (me
1 mod n) × (me

2 mod n)
= (m1m2)e mod n

= Enc(kp, m1m2)

Note that the final equality indicates a lack of semantic
security, so actually RSA is not great when we want to encrypt
plain old integer data as it will be very vulnerable to chosen
plaintext attack.

18/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Why + and ×?

Addition and multiplication seem pretty limiting, why all the
excitement if this is all that is possible?

Note that if M = GF(2), then:

• + ≡ ⊻, i.e. XOR, ‘exclusive or’
• × ≡ ∧, i.e. AND, ‘and’

Moreover, any electronic logic gate can be constructed using
only XOR and AND gates. Therefore, theoretically any
operation on a computer can be performed encrypted.

19/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Adding n-bit integers encoded in GF(2)n (I)

A, B input bits
Cin carry bit
S result bit
Cout carry out bit

≡ a + b

≡ a + b + ab

≡ ab

S = A + B + Cin

Cout = (A + B)Cin + AB + (A + B)ABCin

20/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Adding n-bit integers encoded in GF(2)n (I)

S0 = A0 + B0

S1 = A0B0 + A1 + B1

S2 = (A1 + B1)A0A1B0B1 + (A1 + B1)A0B0 + A1B1 + A2 + B2

S3 =
(
(A1 + B1)A0A1B0B1 + (A1 + B1)A0B0 + A1B1

)
(A2 + B2)A2B2

+
(
(A1 + B1)A0A1B0B1 + (A1 + B1)A0B0 + A1B1

)
(A2 + B2)

+ A2B2 + A3 + B3

This is just n = 4 (i.e. max value 15) … gets messy quickly!

21/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Limitations of homomorphic encryption

1 Message space
• Commonly only easy to encrypt binary/integers

2 Cipher text size
• Present schemes all inflate the size of data substantially
(e.g. 1MB → 16.4GB)

3 Computational cost
• 1000’s additions per sec
• ≈ 50 multiplications per sec

4 Division and comparison operations
• Impossible!

5 Depth of operations
• After a certain depth of multiplications, need to ‘refresh’
cipher text: hugely time consuming, so avoid!

22/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

‘Depth’ of operations

Fully homomorphic encryption schemes only support + and ×,
hence all function evaluations are simply multivariate
polynomials:

p∑
j=1

m∏
i=1

x
nij

i

We define the depth of multiplication operations required to be:

max
{

m∑
i=1

nij : j ∈ {1, . . . , p}
}

− 1

S2 = (A1 + B1)A0A1B0B1 + (A1 + B1)A0B0 + A1B1 + A2 + B2

= A0A2
1B0B1 + A0A1B0B2

1 + A0B0A1 + A0B0B1

+ A1B1 + A2 + B2

has depth 4.

We will see why the depth matters in next section.

22/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

‘Depth’ of operations

Fully homomorphic encryption schemes only support + and ×,
hence all function evaluations are simply multivariate
polynomials:

p∑
j=1

m∏
i=1

x
nij

i

We define the depth of multiplication operations required to be:

max
{

m∑
i=1

nij : j ∈ {1, . . . , p}
}

− 1

S2 = (A1 + B1)A0A1B0B1 + (A1 + B1)A0B0 + A1B1 + A2 + B2

= A0A2
1B0B1 + A0A1B0B2

1 + A0B0A1 + A0B0B1

+ A1B1 + A2 + B2

has depth 4.

We will see why the depth matters in next section.

23/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

‘Bootstrap’ — cipher text refreshing

Unrelated to statistical term ‘bootstrap’.

See in next section, operations with cipher texts in a
semantically secure scheme have a noise component which
increases (potentially geometrically) with multiplication
operations. Hence, if the function evaluated exceeds a certain
depth then noise will overwhelm the message.

The breakthrough by Gentry (2009) was constructing a
decryption algorithm simple enough to run itself encrypted.

Essentially, if you can do (v loosely speaking):

c′ = Dec(Enc(kp, ks), c)

then c′ will be a cipher text representing the same message as c,
but with noise level reset to that of a fresh cipher text.

24/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012)

25/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012) scheme : notation

• Zq = {n : n ∈ Z, −q/2 < n ≤ q/2}
• [a]q is unique integer in Zq st [a]q = a mod q
• Z[x],Zq[x] denote polynomials with coefficients in Z and
Zq respectively

• Φn(x) is nth cyclotomic polynomial
• Φ2d(x) = x2d−1 + 1

25/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012) scheme : notation

• Zq = {n : n ∈ Z, −q/2 < n ≤ q/2}
• [a]q is unique integer in Zq st [a]q = a mod q
• Z[x],Zq[x] denote polynomials with coefficients in Z and
Zq respectively

• Φn(x) is nth cyclotomic polynomial
• Φ2d(x) = x2d−1 + 1

26/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Cyclotomic polynomials

Definition (Cyclotomic polynomial)
For any positive integer n, the nth cyclotomic polynomial is

Φn(x) := (x − ω1)(x − ω2) . . . (x − ωn)

where ω1, . . . , ωn are the primitive nth roots of unity,
ωk := e

2πi
n

k

Equivalently and less formally, the nth cyclotomic polynomial
is the polynomial which:

• divides xn − 1;
• does not divide xm − 1 for any m < n;
• has integer coefficients;
• and is irreducible (cannot be factorised).

27/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012) scheme : notation (cont’d)

• Zq = {n : n ∈ Z, −q/2 < n ≤ q/2}
• [a]q is unique integer in Zq st [a]q = a mod q
• Z[x],Zq[x] denote polynomials with coefficients in Z and
Zq respectively

• Φn(x) is nth cyclotomic polynomial
• Φ2d(x) = x2d−1 + 1

• Interest in elements of polynomial ring Rq = Zq[x]/Φ2d(x)
• Polynomials written a or a(x)
• a ∼ Rq =⇒ uniform random draw from Rq

• a ∼ χ =⇒ discrete multivariate Gaussian draw in Rq

Messages m(x) ∈ M ≜ Rt

Cipher texts c ∈ C ≜ Rq × Rq

27/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012) scheme : notation (cont’d)

• Zq = {n : n ∈ Z, −q/2 < n ≤ q/2}
• [a]q is unique integer in Zq st [a]q = a mod q
• Z[x],Zq[x] denote polynomials with coefficients in Z and
Zq respectively

• Φn(x) is nth cyclotomic polynomial
• Φ2d(x) = x2d−1 + 1
• Interest in elements of polynomial ring Rq = Zq[x]/Φ2d(x)
• Polynomials written a or a(x)

• a ∼ Rq =⇒ uniform random draw from Rq

• a ∼ χ =⇒ discrete multivariate Gaussian draw in Rq

Messages m(x) ∈ M ≜ Rt

Cipher texts c ∈ C ≜ Rq × Rq

27/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012) scheme : notation (cont’d)

• Zq = {n : n ∈ Z, −q/2 < n ≤ q/2}
• [a]q is unique integer in Zq st [a]q = a mod q
• Z[x],Zq[x] denote polynomials with coefficients in Z and
Zq respectively

• Φn(x) is nth cyclotomic polynomial
• Φ2d(x) = x2d−1 + 1
• Interest in elements of polynomial ring Rq = Zq[x]/Φ2d(x)
• Polynomials written a or a(x)
• a ∼ Rq =⇒ uniform random draw from Rq

• a ∼ χ =⇒ discrete multivariate Gaussian draw in Rq

Messages m(x) ∈ M ≜ Rt

Cipher texts c ∈ C ≜ Rq × Rq

27/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012) scheme : notation (cont’d)

• Zq = {n : n ∈ Z, −q/2 < n ≤ q/2}
• [a]q is unique integer in Zq st [a]q = a mod q
• Z[x],Zq[x] denote polynomials with coefficients in Z and
Zq respectively

• Φn(x) is nth cyclotomic polynomial
• Φ2d(x) = x2d−1 + 1
• Interest in elements of polynomial ring Rq = Zq[x]/Φ2d(x)
• Polynomials written a or a(x)
• a ∼ Rq =⇒ uniform random draw from Rq

• a ∼ χ =⇒ discrete multivariate Gaussian draw in Rq

Messages m(x) ∈ M ≜ Rt

Cipher texts c ∈ C ≜ Rq × Rq

28/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012) scheme : setup

• Parameters
• d, degree of both the polynomial rings M and C
• t and q, coefficient sets of polynomial rings M and C
• σ, magnitude of the discrete Gaussian randomness for
semantic security

• Key generation
• Secret key:

ks ∼ R2

(i.e. sample a 2d−1 binary vector for the polynomial
coefficients).

• Public key:
kp := ([−(a · ks + e)]q, a)

where a ∼ Rq and e ∼ χ.
(ks hard to extract due to ring LWE hardness, see
Lyubashevsky et al. 2010)

28/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012) scheme : setup

• Parameters
• d, degree of both the polynomial rings M and C
• t and q, coefficient sets of polynomial rings M and C
• σ, magnitude of the discrete Gaussian randomness for
semantic security

• Key generation
• Secret key:

ks ∼ R2

(i.e. sample a 2d−1 binary vector for the polynomial
coefficients).

• Public key:
kp := ([−(a · ks + e)]q, a)

where a ∼ Rq and e ∼ χ.
(ks hard to extract due to ring LWE hardness, see
Lyubashevsky et al. 2010)

29/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012) : encryption/decryption

• Encode
Need m ∈ Z expressed as polynomial ring element. Write
in b-bit binary representation, m =

∑b−1
n=0 an2n, then

construct m̊(x) =
∑2d−1−1

n=0 anxn ∈ Rt where an = 0 ∀ n ≥ b.

• Encryption Enc(kp, m)
First encode m ∈ Z as m̊ ∈ Rt

c := ([kp1 · u + e1 + ∆ · m̊]q, [kp2 · u + e2]q)

where u, e1, e2 ∼ χ and ∆ =
⌊ q

t

⌉
.

• Decryption Dec(ks, c)

m̊ =
[⌊

t[c1 + c2 · ks]q
q

⌉]
t

so that m = m̊(2) … note, bootstrappable.

29/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012) : encryption/decryption

• Encode
Need m ∈ Z expressed as polynomial ring element. Write
in b-bit binary representation, m =

∑b−1
n=0 an2n, then

construct m̊(x) =
∑2d−1−1

n=0 anxn ∈ Rt where an = 0 ∀ n ≥ b.
• Encryption Enc(kp, m)
First encode m ∈ Z as m̊ ∈ Rt

c := ([kp1 · u + e1 + ∆ · m̊]q, [kp2 · u + e2]q)

where u, e1, e2 ∼ χ and ∆ =
⌊ q

t

⌉
.

• Decryption Dec(ks, c)

m̊ =
[⌊

t[c1 + c2 · ks]q
q

⌉]
t

so that m = m̊(2) … note, bootstrappable.

29/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012) : encryption/decryption

• Encode
Need m ∈ Z expressed as polynomial ring element. Write
in b-bit binary representation, m =

∑b−1
n=0 an2n, then

construct m̊(x) =
∑2d−1−1

n=0 anxn ∈ Rt where an = 0 ∀ n ≥ b.
• Encryption Enc(kp, m)
First encode m ∈ Z as m̊ ∈ Rt

c := ([kp1 · u + e1 + ∆ · m̊]q, [kp2 · u + e2]q)

where u, e1, e2 ∼ χ and ∆ =
⌊ q

t

⌉
.

• Decryption Dec(ks, c)

m̊ =
[⌊

t[c1 + c2 · ks]q
q

⌉]
t

so that m = m̊(2) … note, bootstrappable.

30/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012) : understanding

Dec(ks, c)

=
[⌊

t[c1 + c2 · ks]q
q

⌉]
t

=
[⌊

t[kp1 · u + e1 + ∆ · m̊ + (kp2 · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−(a · ks + e) · u + e1 + ∆ · m̊ + (a · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−e · u + e1 +
⌊ q

t

⌉
m̊ + e2 · ks]q

q

⌉]
t

But, note that ∥−e · u + e1 + e2 · ks∥∞ ≪ q
t by construction, so

that after multiplication by t
q the only term surviving rounding

is m̊.

30/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012) : understanding

Dec(ks, c)

=
[⌊

t[c1 + c2 · ks]q
q

⌉]
t

=
[⌊

t[kp1 · u + e1 + ∆ · m̊ + (kp2 · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−(a · ks + e) · u + e1 + ∆ · m̊ + (a · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−e · u + e1 +
⌊ q

t

⌉
m̊ + e2 · ks]q

q

⌉]
t

But, note that ∥−e · u + e1 + e2 · ks∥∞ ≪ q
t by construction, so

that after multiplication by t
q the only term surviving rounding

is m̊.

30/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012) : understanding

Dec(ks, c)

=
[⌊

t[c1 + c2 · ks]q
q

⌉]
t

=
[⌊

t[kp1 · u + e1 + ∆ · m̊ + (kp2 · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−(a · ks + e) · u + e1 + ∆ · m̊ + (a · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−e · u + e1 +
⌊ q

t

⌉
m̊ + e2 · ks]q

q

⌉]
t

But, note that ∥−e · u + e1 + e2 · ks∥∞ ≪ q
t by construction, so

that after multiplication by t
q the only term surviving rounding

is m̊.

30/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012) : understanding

Dec(ks, c)

=
[⌊

t[c1 + c2 · ks]q
q

⌉]
t

=
[⌊

t[kp1 · u + e1 + ∆ · m̊ + (kp2 · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−(a · ks + e) · u + e1 + ∆ · m̊ + (a · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−e · u + e1 +
⌊ q

t

⌉
m̊ + e2 · ks]q

q

⌉]
t

But, note that ∥−e · u + e1 + e2 · ks∥∞ ≪ q
t by construction, so

that after multiplication by t
q the only term surviving rounding

is m̊.

30/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012) : understanding

Dec(ks, c)

=
[⌊

t[c1 + c2 · ks]q
q

⌉]
t

=
[⌊

t[kp1 · u + e1 + ∆ · m̊ + (kp2 · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−(a · ks + e) · u + e1 + ∆ · m̊ + (a · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−e · u + e1 +
⌊ q

t

⌉
m̊ + e2 · ks]q

q

⌉]
t

But, note that ∥−e · u + e1 + e2 · ks∥∞ ≪ q
t by construction, so

that after multiplication by t
q the only term surviving rounding

is m̊.

30/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012) : understanding

Dec(ks, c)

=
[⌊

t[c1 + c2 · ks]q
q

⌉]
t

=
[⌊

t[kp1 · u + e1 + ∆ · m̊ + (kp2 · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−(a · ks + e) · u + e1 + ∆ · m̊ + (a · u + e2) · ks]q
q

⌉]
t

=
[⌊

t[−e · u + e1 +
⌊ q

t

⌉
m̊ + e2 · ks]q

q

⌉]
t

But, note that ∥−e · u + e1 + e2 · ks∥∞ ≪ q
t by construction, so

that after multiplication by t
q the only term surviving rounding

is m̊.

31/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Fan & Vercauteren (2012) : addition/multiplication

• Addition, + Standard vector and polynomial addition
with modulo reduction:

c1 + c2 = ([c11 + c21]q, [c12 + c22]q)
• Multiplication × Multiplication increases length of the
cipher text vector:

c1 × c2 =
([⌊

t(c11 · c21)
q

⌉]
q

,

[⌊
t(c11 · c22 + c12 · c21)

q

⌉]
q

,

[⌊
t(c12 · c22)

q

⌉]
q

)
Still possible to recover m̊ by modifying decryption to be[⌊

t
q [c1 + c2 · ks + c3 · ks · ks]q

⌉]
t
, it is preferable to perform

a ‘relinearisation’ procedure which compacts the cipher
text to a vector of two polynomials again.

32/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Some important points to note

Operations on messages, m, are really operating on the
encoding, m̊(x) =

∑2d−1−1
n=0 anxn ∈ Rt. So, encoding is in Rt

=⇒

• the coefficients of the underlying m̊(x) must lie within(
t
2 , t

2
]
;

• the order of m̊(x) must not exceed 2d−1 − 1.

Since we always start from a binary encoding, we can often
prove theoretical bounds for a given algorithm executing
correctly.

Toy example: d = 32, q = 224 = 16777216, t = 32, σ = 3.

Demo: 003_HEdeg.R

32/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Some important points to note

Operations on messages, m, are really operating on the
encoding, m̊(x) =

∑2d−1−1
n=0 anxn ∈ Rt. So, encoding is in Rt

=⇒

• the coefficients of the underlying m̊(x) must lie within(
t
2 , t

2
]
;

• the order of m̊(x) must not exceed 2d−1 − 1.

Since we always start from a binary encoding, we can often
prove theoretical bounds for a given algorithm executing
correctly.

Toy example: d = 32, q = 224 = 16777216, t = 32, σ = 3.

Demo: 003_HEdeg.R

32/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Some important points to note

Operations on messages, m, are really operating on the
encoding, m̊(x) =

∑2d−1−1
n=0 anxn ∈ Rt. So, encoding is in Rt

=⇒

• the coefficients of the underlying m̊(x) must lie within(
t
2 , t

2
]
;

• the order of m̊(x) must not exceed 2d−1 − 1.

Since we always start from a binary encoding, we can often
prove theoretical bounds for a given algorithm executing
correctly.

Toy example: d = 32, q = 224 = 16777216, t = 32, σ = 3.

Demo: 003_HEdeg.R

33/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Parameter choice

A reasonable default of:

d = 4096

q = 2128 = 340282366920938463463374607431768211456

t = 32768

σ = 16

gives approximately 128-bit security level and about 4
multiplications deep.

34/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Parameter choice

There are theoretical bounds on both multiplicative depth and
security level in the literature (Lindner & Peikert (2011), Fan &
Vercauteren (2012), Lepoint & Naehrig (2014))

Theorem (Fan & Vercauteren 2012)
Given the leveled homomorphic encryption scheme FV with
parameters d, q, t and σ, the maximum multiplicative depth
Lmax supported satisfies:

4 β(ε) δLmax
R (δR + 1.25)Lmax+1 tLmax−1 <

q

σ

35/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Limitations overview

1 Message space
• Rt, so must encode single datum as polynomials

2 Cipher text size
• Single 4/8-byte value ∈ Z transformed to Rq × Rq =⇒
128KB for parameters on previous slide

3 Computational cost
• 1 message + =⇒ 8192 lots of 128-bit modular addition
• 1 message × =⇒ 4 lots of 4096 degree polynomial
multiplcations involving 128-bit values, plus 8192 lots of
128-bit addition, plus integer addition and multiplication
followed by polynomial modular reduction.

4 Division and comparison operations
• Impossible!

5 Depth of operations
• multiplications limited because end up with products of

−e · u, e1 and e2 terms so that ultimately noise exceeds q
t

36/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Ameliorating computational burden

Theorem (Chinese Remainder Theorem)

Let m1, . . . , mk ∈ Z+ be pairwise coprime positive integers. Let
M =

∏k
i=1 mi and let x1, . . . , xk ∈ Z. Then there is exactly one

integer x that satisfies the conditions:

0 ≤ x < M and x ≡ xi mod mi ∀ 1 ≤ i ≤ k

Thus, an integer message x ∈ [0, M) can be uniquely
represented by the collection of smaller integers {xi}k

i=1 … this
is a Residue Number System. Conversely, can also think of
{xi}k

i=1 being represented by x.

Going x → {xi}k
i=1 is simply taking modulo each mi.

Going {xi}k
i=1 → x can be constructed via the extended

Euclidean algorithm.

37/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Arithmetic with CRT

In particular, note that a Chinese Remainder Theorem
representation preserves modular arithmetic.

Let {xi}k
i=1, {yi}k

i=1 be two collections of residue numbers,
modulo {mi}k

i=1. Let x and y be the corresponding integers
satisfying the Chinese Remainder Theorem. Then,

z = x + y ⇐⇒ z mod mi = zi = (xi + yi) mod mi

In other words, doing one addition (x + y) actually gives k
additions by looking at the single result modulo each mi.

Demo: 001_CRT.R

37/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Arithmetic with CRT

In particular, note that a Chinese Remainder Theorem
representation preserves modular arithmetic.

Let {xi}k
i=1, {yi}k

i=1 be two collections of residue numbers,
modulo {mi}k

i=1. Let x and y be the corresponding integers
satisfying the Chinese Remainder Theorem. Then,

z = x + y ⇐⇒ z mod mi = zi = (xi + yi) mod mi

In other words, doing one addition (x + y) actually gives k
additions by looking at the single result modulo each mi.

Demo: 001_CRT.R

38/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Polynomial Chinese Remainder Theorem (I)

There is a corresponding CRT for polynomials!

Although Φn(x) is irreducible over Q[x], it is not necessarily
irreducible over Zt[x]. Suppose it has r factors:

Φn(x) =
r∏

j=1
fj(x)

Then, we can encode a vector of polynomial messages
(m̊1, . . . , m̊r) since by the Polynomial Chinese Remainder
Theorem ∃ m ∈ Zt[x]/Φn(x) such that m mod fi(x) = m̊i.

Upshot: if we now encrypt m, then we have encrypted a CRT
representation of r messages in just one cipher text.

39/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Polynomial Chinese Remainder Theorem (II)

So, consider a collection of vectors of polynomials encoded in
this way

Zt[x]/f1(x) × · · · × Zt[x]/fr(x) ∋ (m̊i1, . . . , m̊ir) −→ m̊i ∈ Rt

Then,

(∑
i

m̊i

)
mod fj(x) =

(∑
i

m̊ij

)
mod fj(x) ∀j = 1, . . . , r(∏

i

m̊i

)
mod fj(x) =

(∏
i

m̊ij

)
mod fj(x) ∀j = 1, . . . , r

In other words, we can do SIMD on cipher texts. There also
exist automorphism mappings which will allow slots to be
exchanged and interacted. (Smart & Vercauteren 2014)

40/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Software

41/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Existing implementations

• libfhe (Minar 2010) compact single C file library
implementing Gentry (2010)

• ‘Scarab’ (Perl et al. 2011) low level C library implementing
Smart & Vercauteren (2010)

• ‘HELib’ (Halevi & Shoup 2014) most impressive library, in
C++ implementing Brakerski et al. (2012) and lots beyond
the bare bones cryptography (i.e. Polynomial Chinese
Remainder Theorem + automorphisms)

• more besides …

However, these all tend to be very low-level libraries.

42/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

HomomorphicEncryption R package (Aslett 2014)

All core code in high-performance multi-threaded C++, but
accessible via simple R functions and overloaded operators:

library(”HomomorphicEncryption”)

p <- pars(”FandV”)
k <- keygen(p)
c1 <- enc(k$pk, c(42,34))
c2 <- enc(k$pk, c(7,5))
cres1 <- c1 + c2
cres2 <- c1 * c2
cres3 <- c1 %*% c2
dec(k$sk, cres1)
dec(k$sk, cres2)
dec(k$sk, cres3)

Demo: 002_FHE.R

43/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Multiparty Computing

44/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Multiparty Computing

Homomorphic encryption allows private computation with
security guaranteed to one individual.

What if multiple parties want to cooperate, pool their data for
computation while retaining security guarantees on the
original data?

• Can this be solved?
• How strong are the security guarantees?
• Can we prevent cheating?

NB notation change: Zp denotes the standard ring of integers
modulo p.

44/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Multiparty Computing

Homomorphic encryption allows private computation with
security guaranteed to one individual.

What if multiple parties want to cooperate, pool their data for
computation while retaining security guarantees on the
original data?

• Can this be solved?
• How strong are the security guarantees?
• Can we prevent cheating?

NB notation change: Zp denotes the standard ring of integers
modulo p.

45/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Simple Homomorphic Secret Sharing

Party i ∈ {1, 2, 3} wants to share secret si ∈ Zp.

Each party will:

1 Choose ri1, ri2 ∈ Zp uniformly at random.
2 Compute ri3 = (si − ri1 − ri2) mod p
3 Send ri,−j to party j

• party 1 has ri2, ri3 ∀ i
• party 2 has ri1, ri3 ∀ i
• party 3 has ri1, ri2 ∀ i

Note that si = (ri1 + ri2 + ri3) mod p, but no party (except i)
has more than 2 of these values. They are unformly random
and hence uninformative about si.

46/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Simple Homomorphic Secret Sharing : operations

• Addition, +
Each party i:

• Perform steps on previous slide to distribute shares
• Computes vl = r1l + r2l + r3l for l ̸= i
• Sends vl to other parties
• All compute (v1 + v2 + v3) mod p ≡ (s1 + s2 + s3) mod p

• Multiplication ×
Suppose we want s1 × s2 (product of only party 1 and 2).
Party 3 is a semi-trusted third party.

• Party 1 and 2 perform steps on previous slide to distribute
shares

• Each party computes:
• Party 1: v1 = r12r22 + r12r23 + r13r22 mod p
• Party 2: v2 = r13r23 + r11r23 + r13r21 mod p
• Party 3: v3 = r11r21 + r11r22 + r12r21 mod p

• All parties create secret shares of vi and cooperatively
compute v1 + v2 + v3 mod p ≡ s1s2 mod p

46/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Simple Homomorphic Secret Sharing : operations

• Addition, +
Each party i:

• Perform steps on previous slide to distribute shares
• Computes vl = r1l + r2l + r3l for l ̸= i
• Sends vl to other parties
• All compute (v1 + v2 + v3) mod p ≡ (s1 + s2 + s3) mod p

• Multiplication ×
Suppose we want s1 × s2 (product of only party 1 and 2).
Party 3 is a semi-trusted third party.

• Party 1 and 2 perform steps on previous slide to distribute
shares

• Each party computes:
• Party 1: v1 = r12r22 + r12r23 + r13r22 mod p
• Party 2: v2 = r13r23 + r11r23 + r13r21 mod p
• Party 3: v3 = r11r21 + r11r22 + r12r21 mod p

• All parties create secret shares of vi and cooperatively
compute v1 + v2 + v3 mod p ≡ s1s2 mod p

47/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Simple Homomorphic Secret Sharing : security

How secure is this secret sharing compared to homomorphic
encryption?

Assuming parties do not collude:
Information Theoretically Secure

This means that an adversary with unbounded compute power
cannot determine your secret data.

48/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Simple Homomorphic Secret Sharing : comments

• Can we detect deviation from the agreed computation?
• Addition: yes, all parties compute two values (vj , j ̸= i) so
disagreement reveals dishonesty when they are exchanged.

• Multiplication: not in the first step.

• Multiplication involves rounds of communication: this
can be painful (moreso that the cost of homomorphic
encryption in some settings)

• Note the secure addition is neccessary to avoid a low
probability event that would reveal information.

• Multiplication involves a third party who has nothing at
stake.

• These can be trivially extended beyond 3 parties.

48/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Simple Homomorphic Secret Sharing : comments

• Can we detect deviation from the agreed computation?
• Addition: yes, all parties compute two values (vj , j ̸= i) so
disagreement reveals dishonesty when they are exchanged.

• Multiplication: not in the first step.

• Multiplication involves rounds of communication: this
can be painful (moreso that the cost of homomorphic
encryption in some settings)

• Note the secure addition is neccessary to avoid a low
probability event that would reveal information.

• Multiplication involves a third party who has nothing at
stake.

• These can be trivially extended beyond 3 parties.

48/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Simple Homomorphic Secret Sharing : comments

• Can we detect deviation from the agreed computation?
• Addition: yes, all parties compute two values (vj , j ̸= i) so
disagreement reveals dishonesty when they are exchanged.

• Multiplication: not in the first step.

• Multiplication involves rounds of communication: this
can be painful (moreso that the cost of homomorphic
encryption in some settings)

• Note the secure addition is neccessary to avoid a low
probability event that would reveal information.

• Multiplication involves a third party who has nothing at
stake.

• These can be trivially extended beyond 3 parties.

48/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Simple Homomorphic Secret Sharing : comments

• Can we detect deviation from the agreed computation?
• Addition: yes, all parties compute two values (vj , j ̸= i) so
disagreement reveals dishonesty when they are exchanged.

• Multiplication: not in the first step.

• Multiplication involves rounds of communication: this
can be painful (moreso that the cost of homomorphic
encryption in some settings)

• Note the secure addition is neccessary to avoid a low
probability event that would reveal information.

• Multiplication involves a third party who has nothing at
stake.

• These can be trivially extended beyond 3 parties.

49/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Advanced Homomorphic Secret Sharing

There are more advanced methods, based on polynomials over
a finite field, where:

• Upto 1
3 of parties may be corrupted.

• Combining cryptographic and secret sharing to manage
dishonest majority scenarios (but losing information
theoretic security).

• Security against active attackers.
• Both perfectly and imperfectly secure communication
channels.

• …

Could devote a whole 3 hour course to just a subset of these!
We simply sketch an intuiton for the homomorphic properties
of polynomial shares …

50/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

(Simplified) HSS /w Polynomials

-10

0

10

-1 0 1
x

y

Party
Abel

Cain

Eve

50/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

(Simplified) HSS /w Polynomials

-10

0

10

-1 0 1
x

y

Party
Abel

Cain

Eve

50/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

(Simplified) HSS /w Polynomials

-10

0

10

-1 0 1
x

y

Party
Abel

Cain

Eve

50/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

(Simplified) HSS /w Polynomials

-10

0

10

-1 0 1
x

y

Party
Abel

Cain

Eve

50/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

(Simplified) HSS /w Polynomials

-10

0

10

-1 0 1
x

y

Party
Abel

Cain

Eve

50/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

(Simplified) HSS /w Polynomials

-10

0

10

-1 0 1
x

y

Party
Abel

Cain

Eve

50/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

(Simplified) HSS /w Polynomials

-10

0

10

-1 0 1
x

y

Party
Abel

Cain

Eve

50/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

(Simplified) HSS /w Polynomials

-10

0

10

-1 0 1
x

y

Party
Abel

Cain

Eve

51/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

Shameless plug! Knowledge Transfer Partnership

Forthcoming KTP associate job, based at Atom Bank working
with me and Camila Caiado at Durham University.

Jointly working with Computer Science KTP associate based at
Atom and working with Newcastle University.

Statistical modelling and encrypted statistics for mortgage
books.

Expected to advertise for an August – October 2018 start.

52/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

References I

Aslett, L. J. M. (2014). HomomorphicEncryption: Fully homomorphic
encryption. http://www.louisaslett.com/HomomorphicEncryption/.

Brakerski, Z., Gentry, C., & Vaikuntanathan, V. (2012). (Leveled) fully
homomorphic encryption without bootstrapping. Proceedings of the 3rd
innovations in theoretical computer science conference, pp. 309–25. ACM.

Fan, J., & Vercauteren, F. (2012). Somewhat practical fully homomorphic
encryption. IACR Cryptology ePrint Archive.

Gentry, C. (2009). A fully homomorphic encryption scheme (PhD thesis).
Stanford University. Retrieved from <crypto.stanford.edu/craig>

Gentry, C. (2010). Computing arbitrary functions of encrypted data.
Communications of the ACM, 53/3: 97–105. ACM.

Halevi, S., & Shoup, V. (2014). HElib. https://github.com/shaih/HElib.

Lepoint, T., & Naehrig, M. (2014). A comparison of the homomorphic
encryption schemes FV and YASHE. Progress in cryptology–AFRICACRYPT

http://www.louisaslett.com/HomomorphicEncryption/
crypto.stanford.edu/craig
https://github.com/shaih/HElib

53/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

References II

2014, pp. 318–35. Springer.

Lindner, R., & Peikert, C. (2011). Better key sizes (and attacks) for LWE-based
encryption. Topics in cryptology–CT-rsa 2011, pp. 319–39. Springer.

Lyubashevsky, V., Peikert, C., & Regev, O. (2010). On ideal lattices and
learning with errors over rings. Proceedings of the 29th annual international
conference on theory and applications of cryptographic techniques.
Springer-Verlag.

Minar, J. (2010). Libfhe. https://github.com/rdancer/fhe/tree/master/libfhe.

Perl, H., Brenner, M., & Smith, M. (2011). Scarab library.
https://hcrypt.com/scarab-library/.

Rivest, R. L., Adleman, L., & Dertouzos, M. L. (1978). On data banks and
privacy homomorphisms. Foundations of Secure Computation, 4/11: 169–80.

Smart, N. P., & Vercauteren, F. (2010). Fully homomorphic encryption with
relatively small key and ciphertext sizes. Public key cryptography–PKC 2010,

https://github.com/rdancer/fhe/tree/master/libfhe
https://hcrypt.com/scarab-library/

54/54

Standard Encryption Homomorphic Encryption Fan & Vercauteren (2012) Software Multiparty Computing

References III

pp. 420–43. Springer.

Smart, N. P., & Vercauteren, F. (2014). Fully homomorphic SIMD operations.
Designs, codes and cryptography, 71/1: 57–81.

	Standard Encryption
	Homomorphic Encryption
	Fan & Vercauteren (2012)
	Software
	Multiparty Computing

