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Introduction

General Motivation

Security in statistical applications is a growing concern:
« computing in a ‘hostile’ environment (e.g. cloud
computing);

 donation of sensitive/personal data (e.g. medical/genetic
studies);

« complex models on constrained devices (e.g. smart
watches)

 running confidential algorithms on confidential data
(e.g. engineering reliability — topic of this talk)
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Introduction

Motivation in Reliability Theory

Inference on system/network reliability whilst maintaining
privacy requirements of all parties.
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Homomorphic Encryption

Encryption the solution?

Encryption can provide security guarantees ...

Easy
Enc(k,,m) = ¢ Dec(ks,c) =m
Hard without kg
... but is typically ‘brittle’.
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Homomorphic Encryption

Limitations of homomorphic encryption

@ Message space (what we can encrypt)
« Commonly only easy to encrypt
binary/integers/polynomials
® Cipher text size (the result of encryption)

» Present schemes all inflate the size of data substantially
(e.g. IMB — 16.4GB)

©® Computational cost (computing without decrypting)
 1000’s additions per sec
« ~ 50 multiplications per sec
@ Division and comparison operations (equality/inequality
checks)
 Not possible in current schemes!
@ Depth of operations

« After a certain depth of multiplications, need to ‘refresh’

cipher text: hugely time consuming, so avoid!
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Encrypted Reliability Theory

Survival signature

Coolen & Coolen-Maturi (2012) rethought system signatures
(Samaniego 1985) with the objective of retaining separation of
structure and component lifetimes for multiple component

types.
Definition (Survival signature)

Consider a system comprising K component types, with M},
components of type k£ € {1,..., K}. Then the survival signature
O(ly,...,lx), with iy € {0,1,..., M}, is the probability that
the system functions given precisely /; of its components of
type k function.

q>(11,...,zK):{ﬁ (M’“>_1] > ()

k=1

where Sy, . = {z: XM ok =1, Vi)
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Encrypted Reliability

Survival signature toy example

T1 T1
T2 T3 -
T1 T1
T1 T2 T3 @ T1 T2 T3 ¢
0 0 1 0 0 1 1 0
1 0 1 O 1 1 1 O
2 0 1 033 2 1 1 0.67
3 0 1 1 31 1 1
4 0 1 1 4 1 1 1

Table 1: Survival signature for a bridge system, omitting all rows
with T3 = 0, since ® = 0 for these.
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Encrypted Reliability Theory

System lifetimes

Let CF € {0,1,..., M} be random variable denoting number of
components of type k surviving at time ¢. Then, survival
function of system lifetime Ty is:

My My K
P(Ts>t)=Y > i)(ll,...,lK)P(ﬂ{Cf:lk})

11=0 lg=0

M, Mg K
=3 > 0 [T P(CF =)

[1=0 lg=0

B
Il
—

if the component types are independent.

8/17



Encrypted Reliability Theory

System lifetimes

Let CF € {0,1,..., M} be random variable denoting number of
components of type k surviving at time ¢. Then, survival
function of system lifetime Ty is:

My My K
P(Ts>t)=Y > i)(ll,...,lK)P(ﬂ{Cf:lk})

11=0 lg=0

M, Mg K
=3 > 0 [T P(CF =)

[1=0 lg=0

B
Il
—

if the component types are independent.

Note: this is a homogeneous polynomial of degree K + 1 in the
survival signature and component survival probabilities —-

can evaluate encrypted.
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Encrypted Reliability Theory

Propagating uncertainty as a Bayesian

PTS*>t|y1,' yK)

= [ [ P@s > tipk VP y,) - PR |1

_/ /ZZO ZMZKOq)h,..., (m{ct | pF )]

P(dp; |y,) - - Pldpf |y,.)

My K
S S a0 ] [ Pt =t 1ph) Pt )
k=1

11=0 =0

A homogeneous polynomial of degree K + 1 in the survival
signature and posterior predictive component survival
probabilities at each time point = can still evaluate
encrypted.
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Encrypted Reliability Theory

10/17



Encrypted Reliability Theory

0o - 0 Enc (kp, [1079(0, .. ., 0)7])
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Encrypted Reliability

k5
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System Designer

Manufacturer 1

‘1’([1,...,

Encrypted Reliability

0 Enc (ky, [107®(0, ..., 0)])
1 Enc (ky, [107®(0, ..., 1)])

lx  Enc(kp, [10"®(ly,. .., Ix)])

mpg  Enc(kp, [10"®(my, ..., mg)])

Z. K41 ®Enc (kp. \‘10” /P(C,1 =1y |pt)P(dp} | )‘D
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0 - 0  Enc(k,[10°(0,...,0)])
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Lo Uk Enc(ky [10°0(h,. .., )]
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1
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Encrypted Reliability Th

i X
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14 E :
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Encrypted Reliability Th
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Example
Example system

— C1 Pl
— C2 P2
Ng= |
— C3 P3

H FT— —
— C4 P4J

Figure 1: Simple automotive braking system. The master brake
cylinder (M) engages all the four wheel brake cylinders (C1 — C4).
These in turn each trigger a braking pad assembly (P1 — P4). The
hand brake (H) goes directly to the rear brake pad assemblies P3 and
P4; the vehicle brakes when at least one of the brake pad assemblies

is engaged.
g g 11/17



Example
Experimental results

In order to examine the practicality of the problem, perform a
full encrypted analysis using Amazon EC2 cloud computing
service to mimic a global supply chain.

Role Physical Server Location Server Type
System designer  Dublin, Ireland m4.10xlarge
Manufacturer C ~ Northern California, USA  m4.10xlarge
Manufacturer H  Sao Paulo, Brazil c3.8xlarge
Manufacturer M  Sydney, Australia r3.4xlarge
Manufacturer P Tokyo, Japan i2.8xlarge

Precision was set to » = 5 and system designer specifies an
evenly spaced time grid of 100 points ¢ € [0, 5].
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Example

Computational cost (I)

Role Action Timing / Size
Generation of (k,, ks) 0.3 secs
. :!(CI)) .
System designer EnC.l’prqur)l of_. 1 m%n 41.1 secs
: Saving =(®) to disk 2min 41.3secs
Dublin, Ireland . ® .
Compressing Z(®) on disk 48.0 secs

Size of £(®) on disk 5.5GB
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Computational cost (I)

Role Action

Example

Timing / Size

Generation of (k,, ks)
Encryption of 2(®)

System designer Saving 2(®) to disk

Dublin, Ireland

0.3 secs
1min 41.1secs
2min 41.3 secs

Compressing E(®) on disk 48.0 secs
Size of (%) on disk 5.5GB

Transfer 2®) to Manufacturer C 11min 37.5 secs
Manufacturer G Decompress & load 2(®) from disk 10 min 22.4 secs
Northern Update =(%) 6min 18.3 secs
California, USA Saving & compressing Z(®) to disk  2min 9.8 secs
Transfer 2(®) to Manufacturer H 11 min 24.4 secs
Decompress & load =®) from disk 10 min 13.2 secs

Manufacturer H =(®) .
S50 Paulo. Brazil Update = 7min 23.1 secs
’ Saving & compressing 2(®) todisk 4 min 45.2 secs
Transfer E(®) to Manufacturer M 20min 16.5 secs
Decompress & load 2(®) from disk 9 min 41.0 secs

Manufacturer M =(®) .
Sydney, Australia Update = 11 min 28.2 secs
’ Saving & compressing 2(®) todisk  2min 54.2 secs
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Example

Computational cost (II)

Role Action Timing / Size
Transfer =® to Manufacturer P 6min 40.7 secs
Decompress & load 2(® fromdisk 9 min 57.1 secs
Update 2(®) 7min 13.5 secs

Manufacturer P

Tokyo, Japan Compute & 6.1 secs
’ Saving & compressing ¢ to disk 2.5 secs

Size of £ on disk 58.4MB
Transfer £ to System Designer 39.5 secs
System designer Decompress & load ¢ from disk 5.9 secs
Dublin, Ireland Decryption of ¢ 8.6 secs

Total: 2hr 18 min 38.4 secs
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R package

HomomorphicEncryption R package (Aslett 2014)

library(”HomomorphicEncryption”)

p <- parsHelp(”FandV”, lambda=128, L=5)
k <— keygen(p)

cl <- enc(k$pk, 2); c2 <- enc(k$pk, 3)
cres <—- ¢cl + ¢c2 x cl

dec(k$sk, cres)

[1] 8

cmat <— enc(k$pk, matrix(1:9, nrow=3))
cmat2 <- cmat %*x% cmat
dec(k$sk, cmat2)

[,11 [,21 I,3]
[1,1 30 66 102
[2,] 36 81 126
[3,1 42 96 150
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R package
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