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Introduction

Motivation

Security in statistics applications is a growing concern:

+ computing in a ‘hostile’ environment (e.g. cloud
computing);

 donation of sensitive/personal data (e.g. medical/genetic
studies);

» complex models on constrained devices (e.g. smart
watches)

 running confidential algorithms on confidential data
(e.g. engineering reliability)
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Introduction

Perspectives on “privacy”

« Differential privacy
+ on outcomes of ‘statistical queries’
« guarantees of privacy for individual observations
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Introduction

Perspectives on “privacy”

« Differential privacy
+ on outcomes of ‘statistical queries’
« guarantees of privacy for individual observations

 Data privacy
o atrest
* during fitting
« data pooling

* Model privacy

e prior distributions
« model formulation
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Introduction

The perspective for today ...

 Eve has a private model, including prior information
which may itself be private.

e Cain and Abel have private data which is relevant to the
fitting of Eve’s model.

Can Eve fit a model, pooling data from Cain and Abel without

observing their raw data and without revealing her model and
prior information? Abel also doesn’t trust Cain ...
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Introduction
Cryptography the solution?

Encryption can provide security guarantees ...

Easy
Enc(k,,m) = c Dec(ks,c) =m

Hard without &,

... but is typically ‘brittle’.
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Introduction
Cryptography the solution?

Encryption can provide security guarantees ...

Easy
Enc(k,,m) = c Dec(ks,c) =m

Hard without &,

... but is typically ‘brittle’.

Arbitrary addition and multiplication is possible with fully
homomorphic encryption schemes (Gentry, 2009).
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Introduction
Back to the problem ...
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Introduction

Back to the problem ...
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Introduction

Back to the problem ...

(s N
"] X) o s
N
Dec ks,Hﬂ(xﬂEnc(k}p,zﬂ))x

Enc(kpm(lﬂ))] ‘\:_/ -

X Likelihood restricted to low
degree polynomials

X Can only handle very small N due
to multiplicative depth

X MAP/posterior? How? MCMC?
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Introduction

(Simplified) look at Homomorphic Secret Sharing
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Introduction

Eve, Cain & Abel

X'L* = Enc<kp7 XZ)

Enc(kp, W(w))] \:_/

X Likelihood restricted to low | X
degree polynomials :
X Can only handle very small N due |
to multiplicative depth l
X MAP/posterior? How? MCMC? |
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Approximate Bayesian Computation

Approximate Bayesian Computation

@ Sample ¢; ~ w(¢), j € {1,...,m}

@ For each v, simulate a dataset Y; from 7 (- | ;) of the
same size, N, as X.

@ Accept ¢; if d(S(X),S(Y;)) <e.

Where S(-) is some (vector) of summary statistics; d(-,-) is a
distance metric; and ¢ is a user defined threshold.

When S(-) is sufficient and ¢ — 0, this procedure will converge
to the usual Bayesian posterior.
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Approximate Bayesian Computation

@ Sample ¢; ~ w(¢), j € {1,...,m}

@ For each v, simulate a dataset Y; from 7 (- | ;) of the
same size, N, as X.

@ Accept ¢; if d(S(X),S(Y;)) <e.

Where S(-) is some (vector) of summary statistics; d(-,-) is a
distance metric; and ¢ is a user defined threshold.

When S(-) is sufficient and ¢ — 0, this procedure will converge
to the usual Bayesian posterior.

Benefit: Eve can do steps 1 & 2 and encrypt her simulated
data, eliminating need for function privacy.

Problems: d(-, -) can only be low degree polynomials;
Must compute S(-) secretly for Cain and Abel’s pooled data;
Naive ABC performs poorly & choosing ¢ blindfolded.
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Approximate Bayesian Computation

Naive encrypted ABC (I) - Eve & data owners 1,..., P

@ Eve samples ¢; ~ w(v)), j € {1,...,m}; simulates datasets
Y; of size N from 7 (- |¢;); and computes S(Y).
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Naive encrypted ABC (I) - Eve & data owners 1,..., P

@ Eve samples ¢; ~ w(v)), j € {1,...,m}; simulates datasets
Y; of size N from 7 (- |¢;); and computes S(Y).

@ Eve computes HSS shares S*7(Y}),p € {1,..., P + 1};
+ send S*P(Y;) to data owner p
« retain S*F+1(Yj)

© Data owners k € {1,..., P} create HSS shares S*P(X}),
pef{l,...,P+1}

 send S*?(X},) to data owner p (retaining when p = k)

« send S*F*+1(X},) to Eve

® All compute S**(X) = S (U, S*(X})), where S(-) is a
homomorphically computable pooling function.

® All compute d}” = d (S*7(X), S*?(Y;)), where d(-) is a
homomorphically computable distance metric. 12/40



Approximate Bayesian Computation

Naive encrypted ABC (II) — Eve & data owners 1, . . .,

@ All send their shares, d;p , to a randomly chosen data
ownerkel,..., P
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Approximate Bayesian Computation

Naive encrypted ABC (II) — Eve & data owners 1, . . .,

@ All send their shares, d;p , to a randomly chosen data
ownerkel,..., P

@ Data owner k reconstructs d; = Dec(d}', ..., d;"*1)

® Data owner k sends to Eve a list of those indices j such
that d]' <e.
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Approximate Bayesian Computation

Naive encrypted ABC (IIl) — in pictures

() —> {1; ;n:1

ﬂw)

{57 (Vi)

28 2
1 d = Dec(d‘{(EVe d*caln d*Abel)
J=1{j:dj<e}
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Approximate Bayesian Computation

Points to note

Samples ¢; are never seen by Cain and Abel

 Eve learns only an accept/reject
« Final distances between summary statistics decrypted by
Cain or Abel

Cain and Abel do not learn about each other’s data
« only see composite distance between pooled summary
stats and Eve’s simulation
 can make distances information theoretically secure by
adding random values generated by Cain, Abel and Eve

» BUT, Cain and Abel do have to know S(-), which in most
ABC settings is model dependent — risk to Eve
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Approximate Bayesian Computation

Obstacles to cryptographic ABC

¢ Homomorphically computable pooling of summary
statistics

¢ Summary statistics that don’t reveal model

« Homomorphically computable distance metric

Blindfold selection of
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Approximate Bayesian Computation

Obstacles to cryptographic ABC

¢ Homomorphically computable pooling of summary
statistics

¢ Summary statistics that don’t reveal model

« Homomorphically computable distance metric

Blindfold selection of

 Propose using ABC-PMC/SMC, with distance chosen to
retain a% of samples instead. Eve then uses accepted ¢; on
step t to propose step ¢ + 1 and repeat algorithm.

« Standard idea — details omited.
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Cryptographically Secure Inference

Collection of Coarse Random Marginals (CCRM)

Construct in the manner of a decision forest:

« Grow T trees, each to predetermined fixed depth L
* Choose variable v € {1, ..., d} uniformly at random
« Each split point uniformly at random in range of z.,,
 Thus Cain and Abel must provide range of each variable in
the data, though this range need not be tight
+ e.g.release (min; z;, + 1, max; x;, + 1) forn ~ N(0,02)
with o2 chosen not to exclude too large a range
s = S(-) is then the counts of observations in each
terminal leaf
« vector of 72" counts
« S(-) is then simply vector addition
¢ Define

T2k
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Cryptographically Secure Inference

Collection of Coarse Random Marginals (CCRM)
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Cryptographically Secure Inference

Collection of Coarse Random Marginals (CCRM)

X1

S(X)={(...,3,3,0,3,43,33,64,24,...)
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Cryptographically Secure Inference

CCRM solutions

¢ Homomorphically computable pooling of summary
statistics
» simple vector addition

¢ Summary statistics that don’t reveal model
+ CCRM is completely random, grown the same way for
all models and data sets. Only weak information about
range of each variable leaked.

¢ Homomorphically computable distance metric
« sum of squared differences
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Cryptographically Secure Inference

Variance of distance metric per CRM

Lemma Let the random variable V' be multinomially distributed

with success probabilities p = (p1, ..., px) for n trials. Then,
k
Var (Z(VZ — ci)2>
=1
k

= [(”Cn_4 —n2(n—1)%)p} + (6"Cpz + 2n(n — 1)(4c; — n))p?
i=1
+ (Tn(n — 1) —n? —4em(2n — 3)(1 + ¢))p? + (n+ deinfe; — 1)) p;
k
+ Z[— n(2¢; — 1)(2¢; — 1)pip; + 2n(n — 1)(2¢; — 1)p22pj

2753

+2n(n —1)(2¢; — 1)p¢p§ —2n(n—1)(2n — 3)p%pﬂ

= can be used to weight random marginals differently.
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Cryptographically Secure Inference

ABCDE: Approximate Bayesian Computation Done

Encrypted

Tying it all together:

ABC-PMC/SMC
Homomorphic Secret Sharing with data pooling
CCRM summary statistic protecting model/prior privacy

Pooled S(-) computable encrypted from multiple data
owners

Distance computable encrypted and not learned by
modeller

Variance of each CRM computable encrypted for weighting
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Cryptographically Secure Inference

Selected connections in ABC literature

e Bernton, E., Jacob, P. E., Gerber, M., & Robert, C. P. (2019).
Approximate Bayesian computation with the Wasserstein
distance. Journal of the Royal Statistical Society: Series B,
81(2), 235-269.

¢ Gutmann, M. U., Dutta, R., Kaski, S., & Corander, J. (2017).
Likelihood-free inference via classification. Statistics and
Computing, 1-15.

¢ Fearnhead, P., & Prangle, D. (2012). Constructing
summary statistics for approximate Bayesian computation:
semi-automatic approximate Bayesian computation.
Journal of the Royal Statistical Society: Series B, 74(3),
419-474.

23/40



Examples

Examples
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Examples
Toy example

Super simple first example, 8-dimensional multivariate
Normal.

where 7; chosen independently uniformly at random on the
interval [—1, 1] for repeated experiments.

+ Simulate n = 1000 observations

« Range of all dimensions taken to be [—4, 4] for
construction of CCRM, without checking true range of X

+ Standard ABC used S(X) = (z1,...,Ts)
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Toy example: 8D Normal, marginal quadratic loss
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Examples
Toy example: 8D Normal, marginal posterior o
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Examples
Toy example: 8D Normal, marginal posterior o
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Examples

Toy example: distance concordance
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Examples

Toy example: distance concordance
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Examples
Expected quadratic loss

Can understand lowest ABC error achievable without Monte
Carlo error:

E [(n—p)?| T =]

= |.Alt] § <u_/o:09]p(5($) = S(x obs)|da1,...,dat) W(d9)>2

because for 1-level CRMs:

P (S(z) = S2°*) |day, ..., day)

H < ) v (X < ag)™ (1 — Fp (X <ag))" ™"

where my, = #{i : 29" < az}.

29/40



Examples
Expected quadratic loss

log E[quad loss]

0 250 500 750 100
Number of CRMs
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g-and-k distribution (Haynes et al. 1997)

Defined via inverse distribution function
F~ x| A,B,g,k) =

1— —gd !
|40l o (—g® Y(2))

A+ B
1+exp(—gP1(x))

] (1+@ ' (2)2) o ()

Following Allingham et al. (2009) and Fearnhead & Prangle
(2012), take:

« A=3B=1g9=2k=3
« simulate n = 10000 observations
» standard ABC uses the order statistics,
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Examples

g-and-k: quadratic loss
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Examples

g-and-k: quadratic loss
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g-and-k: density plots

- 0.15
80 (a)
—~ 60-
< 0.1
E: 40 - <
20~ 0.05
0- 1 [ 1 1 1
0.0 2.5 5.0 7.5 10.0 0
0 5 10
A A
25- 0.15
20- (b)
E-Q\ 15- _ 0.1
g 10- 7
5- 0.05
O- 1 ' 1 1 1 1
0.0 2.5 5.0 7.5 10.0 0
B 0 5 10

B

T =1000,L = 3,m =10°,a = 0.01  Allingham et al (2009)

33/40



g-and-k: density plots
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Examples

Tuberculosis Transmission (Tanaka et al. 2006)

Model of transmission of disease,

« ‘birth’ of new infections, rate a

+ ‘death’ recovery or mortality of carrier, rate &

 ‘mutation’ genotype of bacterium mutates within carrier,
rate @ (infinite-alleles assumption)

X;(t) num infections type ¢ at time ¢; G(¢) num unique
genotypes.
« San Francisco tuberculosis data 1991/2, 473 samples (no
time)
» Fearnhead & Prangle (2012) transform
(a/(a+d84+6),6/(a+5+0))
* S(X) = (G(tend)/473v 1- Ei(X(tend)/473)2)
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Posterior samples

Examples
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Posterior samples
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Theory

One dimensional asymptotics (I)

Proposition: When d = 1, if
pr(S(x),S(y)) == X F_, p(Sk(z), Sk(y)) for some discrepency
p:RxR—[0,00) thenas T — oo

i Pr8(@),5®) as. /°° o(Fy (2). Fy (2))dz,

T—o00 T —00

where Fy and Fy are the empirical cumulative distribution
functions for the data sets 1., and y;.,, respectively. In
particular

I5(@) = 5(y)l1, then
) = Wi 1, Y1n)

) =
Yy
) := [|S(z) = S(y)||3, then
T pr(S(x),S(y)) L2 [ ° (Fx(z) — Fy(2))2dz.
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Theory

One dimensional asymptotics (II)

Corollary: As T — oo the following Central Limit Theorem
holds:

T~ pr(S(2), S(y)) — J p(Fx (), Fy(2))d=
VT

where o2 := Var,[p(Fx (u), Fy (u))].

= N(0,07),

=

« convergence of the distance is O(v/T)
« for large enough 7T estimates of uncertainty can be made
using the Gaussian approximation.
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Theory

Higher dimensions

Currently hard to see that it matches known distances

« Can get non-asymptotic bounds on uncertainty of CCRM
estimator

» Asymptoticsin L

» Some very early work on benefits of L > 1 with correlation
structure
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Theory

Conclusions

So far, this ...

« Provides encrypted inference whilst preserving model,
prior and data privacy

 Enables pooling of multiple data owners

 Theoretically arbitrary low-dimensional models

« Some theoretical justification in 1D case

* ... but this is work-in-progress! Currently in progress:

» Method of ensuring differential privacy
 Encrypted software implementation of this scheme
 Best use of weights

« Fuller understanding of accuracy for CCRM choices
 Data as a service

 Perhaps also useful as a model independent summary
statistic for unencrypted ABC too?

e Questions, comments and discussion welcome! 40/40
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