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Simulating system lifetimes

Simple approach to simulating system lifetimes in a system
with K = 3 components …

y1 = 2.4

y3 = 3.1y2 > 3.1

C =
{
{1, 2}, {1, 3}

}
tS = min

C∈C

{
max
i∈C

{yi}
}

P =
{
{1}, {2, 3}

}
tS = max

P∈P

{
min
i∈P

{yi}
}



4/25

Introduction Multi-level Monte Carlo (MLMC) MLMC for reliability Future work

Simulating system lifetimes

Simple approach to simulating system lifetimes in a system
with K = 3 components …

y1 = 2.4

y3 = 3.1y2 = 3.7

C =
{
{1, 2}, {1, 3}

}
tS = min

C∈C

{
max
i∈C

{yi}
}

P =
{
{1}, {2, 3}

}
tS = max

P∈P

{
min
i∈P

{yi}
}



4/25

Introduction Multi-level Monte Carlo (MLMC) MLMC for reliability Future work

Simulating system lifetimes

Simple approach to simulating system lifetimes in a system
with K = 3 components …

tS = 3.1

y1 = 2.4

y3 = 3.1y2 = 3.7

C =
{
{1, 2}, {1, 3}

}
tS = min

C∈C

{
max
i∈C

{yi}
}

P =
{
{1}, {2, 3}

}
tS = max

P∈P

{
min
i∈P

{yi}
}



4/25

Introduction Multi-level Monte Carlo (MLMC) MLMC for reliability Future work

Simulating system lifetimes

Simple approach to simulating system lifetimes in a system
with K = 3 components …

tS = 3.1

y1 = 2.4

y3 = 3.1y2 = 3.7

C =
{
{1, 2}, {1, 3}

}

tS = min
C∈C

{
max
i∈C

{yi}
}

P =
{
{1}, {2, 3}

}
tS = max

P∈P

{
min
i∈P

{yi}
}



4/25

Introduction Multi-level Monte Carlo (MLMC) MLMC for reliability Future work

Simulating system lifetimes

Simple approach to simulating system lifetimes in a system
with K = 3 components …

tS = 3.1

y1 = 2.4

y3 = 3.1y2 = 3.7

C =
{
{1, 2}, {1, 3}

}
tS = min

C∈C

{
max
i∈C

{yi}
}

P =
{
{1}, {2, 3}

}
tS = max

P∈P

{
min
i∈P

{yi}
}



4/25

Introduction Multi-level Monte Carlo (MLMC) MLMC for reliability Future work

Simulating system lifetimes

Simple approach to simulating system lifetimes in a system
with K = 3 components …

tS = 3.1

y1 = 2.4

y3 = 3.1y2 = 3.7

C =
{
{1, 2}, {1, 3}

}
tS = min

C∈C

{
max
i∈C

{yi}
}

P =
{
{1}, {2, 3}

}

tS = max
P∈P

{
min
i∈P

{yi}
}



4/25

Introduction Multi-level Monte Carlo (MLMC) MLMC for reliability Future work

Simulating system lifetimes

Simple approach to simulating system lifetimes in a system
with K = 3 components …

tS = 3.1

y1 = 2.4

y3 = 3.1y2 = 3.7

C =
{
{1, 2}, {1, 3}

}
tS = min

C∈C

{
max
i∈C

{yi}
}

P =
{
{1}, {2, 3}

}
tS = max

P∈P

{
min
i∈P

{yi}
}



5/25

Introduction Multi-level Monte Carlo (MLMC) MLMC for reliability Future work

Monte Carlo simulation (I)

To estimate the expectation of some functional of the system
lifetime, µ = E[f(TS)], simply perform Monte Carlo simulation:

E[f(TS)] ≈ În ≜ 1
n

n∑
j=1

f(T(j)
S )

= 1
n

n∑
j=1

f
(
min
C∈C

{
max
i∈C

{y(j)
i }

})

We know that,

P
(

|̂In − µ| > z
σ√
n

)
≈ P(|Z| > z)

for Z ∼ N(0, 1), with În an unbiased estimate of µ.
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Monte Carlo simulation (II)

Thus, for a desired level of accuracy ε > 0 with α% confidence,
we require

n = z2α/2σ
2ε−2

Monte Carlo simulations, where zα/2 is such that
P(Z > zα/2) = α/2.

zα/2 constant for a given confidence, so the variable compute
cost in simulation can be defined as

CostMC = σ2ε−2|C|

Costly for:

• High accuracy (small ε)
• Large systems (many cutsets)
• Large system lifetime variance
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Trying to cheat …

May want to try getting a coarser estimate.

C′ ⊂ C =⇒ min
C∈C′

{
max
i∈C

{yi}
}

= t′S ≥ tS = min
C∈C

{
max
i∈C

{yi}
}

But now, Î′n is a biased estimate of µ. Let Î′n → η, then:

E
[
(̂I′n − µ)2

]
= E

[
(̂I′n − η + η − µ)2

]
= E

[
(̂I′n − η)2

]
+ (η − µ)2

= σ2

n
+ (η − µ)2

so that the error is composed of contributions from both the
coarse approximation variance and the bias in the estimate.
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Multi-level Monte Carlo (MLMC)
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Multi-level Monte Carlo (MLMC)

MLMC grew out of stochastic partial differential equation
applications where simulations are so expensive that
performing enough to reduce Monte Carlo variance to
acceptable levels was impractical.

MLMC, pioneered by Stefan Heinrich (TU Kaiserslautern)
(Heinrich 1998) and Mike Giles (Oxford) (Giles 2008), combines
simulations at different levels of approximation to achieve the
same accuracy ε with far lower computational cost.

Can we use MLMC in combination with an approximation
arising from evaluation of subsets of the minimal cutsets?
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Lightning introduction to MLMC (I)

Assume have L + 1 levels of accuracy with which we can
simulate system failure time, T0, . . . ,TL ≡ TS, with level L
being equivalent to standard Monte Carlo1.

Here, T0, . . . ,TL is the estimate based on a nested sequence of
cutsets, C0 ⊂ · · · ⊂ CL = C.

Then, a telescoping sum can be formed:

E[TS] ≡ E[T0] +
L∑

l=1

E[Tl − Tl−1]

In a nut shell, this identity provides an estimator with same
expected value as standard Monte Carlo … but, for a fixed
variance (fixed accuracy) has much lower computational cost.

1It is typically not the case that the highest accuracy level is unbiased in
most MLMC applications
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Lightning introduction to MLMC (II)

Independently estimate each term. Crucially, within each term,
Tl and Tl−1 use the same random component simulations:

E[Tl − Tl−1] ≈ N−1
l

Nl∑
j=1

(
t(j)l − t(j)l−1

)
with each level having cost ∝ σ2

l |Cl|.

The overall MLMC variance is then

Var

 L∑
l=0

E[Tl − Tl−1]

 =
L∑

l=0

N−1
l σ2

l

at a cost of

CostML =
L∑

l=0

Nl|Cl|

Hence, given a target fixed variance (accuracy), taking for each
level Nl ∝ σl√

|Cl|
will minimise the computational cost.



11/25

Introduction Multi-level Monte Carlo (MLMC) MLMC for reliability Future work

Lightning introduction to MLMC (II)

Independently estimate each term. Crucially, within each term,
Tl and Tl−1 use the same random component simulations:

E[Tl − Tl−1] ≈ N−1
l

Nl∑
j=1

(
t(j)l − t(j)l−1

)
with each level having cost ∝ σ2

l |Cl|.
The overall MLMC variance is then

Var

 L∑
l=0

E[Tl − Tl−1]

 =
L∑

l=0

N−1
l σ2

l

at a cost of

CostML =
L∑

l=0

Nl|Cl|

Hence, given a target fixed variance (accuracy), taking for each
level Nl ∝ σl√

|Cl|
will minimise the computational cost.



11/25

Introduction Multi-level Monte Carlo (MLMC) MLMC for reliability Future work

Lightning introduction to MLMC (II)

Independently estimate each term. Crucially, within each term,
Tl and Tl−1 use the same random component simulations:

E[Tl − Tl−1] ≈ N−1
l

Nl∑
j=1

(
t(j)l − t(j)l−1

)
with each level having cost ∝ σ2

l |Cl|.
The overall MLMC variance is then

Var

 L∑
l=0

E[Tl − Tl−1]

 =
L∑

l=0

N−1
l σ2

l

at a cost of

CostML =
L∑

l=0

Nl|Cl|

Hence, given a target fixed variance (accuracy), taking for each
level Nl ∝ σl√

|Cl|
will minimise the computational cost.



12/25

Introduction Multi-level Monte Carlo (MLMC) MLMC for reliability Future work

Lightning introduction to MLMC (III)

For a desired accuracy ε > 0, this leads to an overall cost:

CostML =
L∑

l=0

Nl|Cl|

= ε−2

 L∑
l=0

σl

√
|Cl|

2

Recall,
CostMC = σ2ε−2|C| ≜ σ2ε−2|CL|

So, σl must decay in order for MLMC to beat MC.

See Giles (2015) for deeper review.
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MLMC for reliability
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MLMC for reliability

Recall, our proposed application to reliability involves a nested
sequence of cutsets providing improving accuracy:

C0 ⊂ · · · ⊂ CL = C

How do we choose?

• It has been proven that anything less than a geometric
increase in cost moving up the levels is suboptimal.

• The variance must likewise decay rapidly (geometrically)
to ensure that the overall MLMC cost beats MC.

• The mean of each level decaying rapidly is desirable so
that each additional term has little influence.

• By the same argument, we want level 0 to be the best
estimate possible since it will have smallest cost and be
repeated most.
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Setup

Some notation:
• Let C ≜ {C1, . . . ,CM}.
• Let there be K components, with lifetimes τ = (τ1, . . . , τK).
• Let Ci(τ) ≜ max

j∈Ci
{τj}.

• Bracket subscript for some specified order statistics, C(1).

To achieve geometric growth in cost we will aim for approx
doubling of the number of cutsets in each level. For example,
M = 1000, take:

|C7| = 1000
|C6| = 500
|C5| = 250

...
|C0| = 8
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Selecting the levels, l = 0

..1 Set L = max{⌊log2 |C| − 2⌋, 3}

..2 Simulate 100 failures for each of K components,
τ (1), . . . , τ (100).

..3 Estimate

E[Ci(τ)] ≈ 0.01
100∑
j=1

Ci(τ (j))

..4 Sort cutsets by order statistic of expected failure time,
(C(1), . . . ,C(M))

..5 Set C0 = {C(1), . . . ,C(m0)} where m0 = ⌈2−L(|C| − 1) + 1⌉.

This provides a crude estimate of the most common failure
cause cutsets.



16/25

Introduction Multi-level Monte Carlo (MLMC) MLMC for reliability Future work

Selecting the levels, l = 0

..1 Set L = max{⌊log2 |C| − 2⌋, 3}

..2 Simulate 100 failures for each of K components,
τ (1), . . . , τ (100).

..3 Estimate

E[Ci(τ)] ≈ 0.01
100∑
j=1

Ci(τ (j))

..4 Sort cutsets by order statistic of expected failure time,
(C(1), . . . ,C(M))

..5 Set C0 = {C(1), . . . ,C(m0)} where m0 = ⌈2−L(|C| − 1) + 1⌉.

This provides a crude estimate of the most common failure
cause cutsets.



16/25

Introduction Multi-level Monte Carlo (MLMC) MLMC for reliability Future work

Selecting the levels, l = 0

..1 Set L = max{⌊log2 |C| − 2⌋, 3}

..2 Simulate 100 failures for each of K components,
τ (1), . . . , τ (100).

..3 Estimate

E[Ci(τ)] ≈ 0.01
100∑
j=1

Ci(τ (j))

..4 Sort cutsets by order statistic of expected failure time,
(C(1), . . . ,C(M))

..5 Set C0 = {C(1), . . . ,C(m0)} where m0 = ⌈2−L(|C| − 1) + 1⌉.

This provides a crude estimate of the most common failure
cause cutsets.



16/25

Introduction Multi-level Monte Carlo (MLMC) MLMC for reliability Future work

Selecting the levels, l = 0

..1 Set L = max{⌊log2 |C| − 2⌋, 3}

..2 Simulate 100 failures for each of K components,
τ (1), . . . , τ (100).

..3 Estimate

E[Ci(τ)] ≈ 0.01
100∑
j=1

Ci(τ (j))

..4 Sort cutsets by order statistic of expected failure time,
(C(1), . . . ,C(M))

..5 Set C0 = {C(1), . . . ,C(m0)} where m0 = ⌈2−L(|C| − 1) + 1⌉.

This provides a crude estimate of the most common failure
cause cutsets.



17/25

Introduction Multi-level Monte Carlo (MLMC) MLMC for reliability Future work

Selecting the levels, l > 0 (I)

For the remaining levels, note that we want

E[Tl − Tl−1] > E[Tl+1 − Tl]

Therefore, having chosen level l − 1, Cl−1, want level l st

E[Tl−1 − Tl] → max

But,

E[Tl−1 − Tl] ≤ E
[
Tl−1 − min

{
Tl−1, max

C∈C\Cl−1

C(τ)
}]

We will attempt to crudely achieve this ordering using the 100
simulations already done.
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Selecting the levels, l > 0 (II)

For remaining l ∈ {1, . . . , L}

..1 Reindex remaining cutsets in C\Cl−1 from 1 toM − ml−1.

..2 Compute

δi = 0.01
100∑
j=1

[
Tl−1−min

{
Ci(τ (j)),Tl−1

}]
∀ i = 1, . . . ,M−ml−1

..3 Sort cutsets by order statistic of δi, (C(1), . . . ,C(M−ml−1))

..4 Set Cl = Cl−1 ∪ {C(1), . . . ,C(ml)} where
ml = ⌈2−L+l(|C| − 1) + 1⌉ − ml−1.
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Running the MLMC (summary)

Finally, with the levels all selected, set a desired precision
ε > 0 and proceed:

..1 Initially set Nl = 100 for l = 0, . . . , 3 and simulate these
levels

..2 Estimate level variance

..3 Compute additional number of iterations, Nl, at each level
to achieve ε precision. Repeat 2 until less than 1% growth
in Nl ∀ l.

..4 Variance has converged, now test bias. If bias within
tolerance end, otherwise add a new level and return to 2.
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Mean plot — 75 different Weibull components
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Variance plot — 75 different Weibull components

-15

-10

-5

0

5

5 10
Level

lo
g 2
(V
ar
ia
nc
e)

Method
MLMC

MC

|C| = 293, 101



22/25

Introduction Multi-level Monte Carlo (MLMC) MLMC for reliability Future work

Cost plot — all different Weibull components
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Future work



24/25

Introduction Multi-level Monte Carlo (MLMC) MLMC for reliability Future work

Open questions …

Many possible directions:

• Estimation of the full system lifetime distribution (Giles
2015)

• Use MLMC with a survival signature based simulation in
the independent/exchangeable case (?)

• Preserving privacy of component lifetimes — can MLMC
provide enough efficiency for private simulation (?)
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