Cryptographically secure multiparty evaluation of system reliability

Louis J. M. Aslett (louis.aslett@durham.ac.uk)

Department of Mathematical Sciences
Durham University

1st UK Reliability Meeting 3 April 2019

General Motivation

Security in statistical applications is a growing concern:

• computing in a 'hostile' environment (e.g. cloud computing);

Security in statistical applications is a growing concern:

- computing in a 'hostile' environment (e.g. cloud computing);
- donation of sensitive/personal data (e.g. medical/genetic studies);

Security in statistical applications is a growing concern:

- computing in a 'hostile' environment (e.g. cloud computing);
- donation of sensitive/personal data (e.g. medical/genetic studies);
- complex models on constrained devices (e.g. smart watches)

Security in statistical applications is a growing concern:

- computing in a 'hostile' environment (e.g. cloud computing);
- donation of sensitive/personal data (e.g. medical/genetic studies);
- complex models on constrained devices (e.g. smart watches)
- running confidential algorithms on confidential data (e.g. engineering reliability — topic of this talk)

Motivation in Reliability Theory

Inference on system/network reliability whilst *maintaining privacy requirements* of all parties.

Encryption can provide security guarantees ...

$$\operatorname{Enc}(k_p,m) \stackrel{\longleftarrow}{\rightleftharpoons} c$$
 $\operatorname{Dec}(k_s,c) = m$ Hard without k_s

Encrypted Reliability Theory

... but is typically 'brittle'.

R package

Encryption the solution?

Encryption can provide security guarantees ...

$$\operatorname{\mathsf{Enc}}(k_p,m) \stackrel{\longleftarrow}{=} c$$
 $\operatorname{\mathsf{Easy}}$ $\operatorname{\mathsf{Dec}}(k_s,c) = m$ Hard without k_s

... but is typically 'brittle'.

Rivest et al. (1978) proposed encryption schemes capable of arbitrary addition and multiplication may be possible. Gentry (2009) showed first **fully homomorphic encryption** scheme.

Encrypted Reliability Theory

Encryption can provide security guarantees ...

$$\operatorname{Enc}(k_p,m) \stackrel{\longleftarrow}{\rightleftharpoons} c$$
 $\operatorname{Dec}(k_s,c) = m$ Hard without k_s

... but is typically 'brittle'.

$$m_1 \qquad m_2 \stackrel{+}{\longrightarrow} m_1 + m_2$$

Encryption can provide security guarantees ...

$$\operatorname{\mathsf{Enc}}(k_p,m) \stackrel{\longleftarrow}{\rightleftharpoons} c$$
 $\operatorname{\mathsf{Dec}}(k_s,c) = m$ Hard without k_s

... but is typically 'brittle'.

Encryption can provide security guarantees ...

$$\operatorname{\mathsf{Enc}}(k_p,m) \stackrel{\longleftarrow}{\rightleftharpoons} c$$
 $\operatorname{\mathsf{Dec}}(k_s,c) = m$ Hard without k_s

... but is typically 'brittle'.

$$\begin{array}{c|cccc} m_1 & m_2 & \xrightarrow{\hspace{0.2cm}+\hspace{0.$$

Encryption can provide security guarantees ...

$$\operatorname{\mathsf{Enc}}(k_p,m) \stackrel{\longleftarrow}{\rightleftharpoons} c$$
 $\operatorname{\mathsf{Dec}}(k_s,c) = m$ Hard without k_s

... but is typically 'brittle'.

$$m_1$$
 m_2 $m_1 + m_2$

$$\downarrow \operatorname{Enc}(k_p, \cdot) \downarrow \qquad \qquad \bigwedge \operatorname{Dec}(k_s, \cdot)$$
 c_1 c_2 $\longrightarrow \qquad c_1 \oplus c_2$

Limitations of homomorphic encryption

- Message space (what we can encrypt)
 - Commonly only easy to encrypt binary/integers/polynomials
- 2 Cipher text size (the result of encryption)
 - Present schemes all inflate the size of data substantially (e.g. 1MB \rightarrow 16.4GB)
- Computational cost (computing without decrypting)
 - 1000's additions per sec
 - \approx 50 multiplications per sec
- Division and comparison operations (equality/inequality) checks)
 - Not possible in current schemes!
- **6** Depth of operations
 - After a certain depth of multiplications, need to 'refresh' cipher text: hugely time consuming, so avoid!

System lifetimes

Let $C_t^k \in \{0, 1, \dots, M_k\}$ be random variable denoting number of components of type k surviving at time t. Then, survival function of system lifetime T_S is:

$$\mathbb{P}(T_S > t) = \sum_{l_1 = 0}^{M_1} \cdots \sum_{l_K = 0}^{M_K} \Phi(l_1, \dots, l_K) \, \mathbb{P}\left(\bigcap_{k = 1}^K \{C_t^k = l_k\}\right)$$
$$= \sum_{l_1 = 0}^{M_1} \cdots \sum_{l_K = 0}^{M_K} \Phi(l_1, \dots, l_K) \prod_{k = 1}^K \mathbb{P}\left(C_t^k = l_k\right)$$

if the component types are independent.

System lifetimes

Let $C_t^k \in \{0, 1, \dots, M_k\}$ be random variable denoting number of components of type k surviving at time t. Then, survival function of system lifetime T_S is:

$$\mathbb{P}(T_S > t) = \sum_{l_1=0}^{M_1} \cdots \sum_{l_K=0}^{M_K} \Phi(l_1, \dots, l_K) \, \mathbb{P}\left(\bigcap_{k=1}^K \{C_t^k = l_k\}\right)$$
$$= \sum_{l_1=0}^{M_1} \cdots \sum_{l_K=0}^{M_K} \Phi(l_1, \dots, l_K) \, \prod_{k=1}^K \mathbb{P}\left(C_t^k = l_k\right)$$

if the component types are independent.

Note: this is a homogeneous polynomial of degree K+1 in the survival signature and component survival probabilities \implies can evaluate encrypted.

Propagating uncertainty as a Bayesian

$$P(T_{S^*} > t \mid \underline{y}_1, \dots \underline{y}_K)$$

$$= \int \dots \int P(T_{S^*} > t \mid p_t^1, \dots p_t^K) P(dp_t^1 \mid \underline{y}_1) \dots P(dp_t^K \mid \underline{y}_K)$$

$$= \int \dots \int \left[\sum_{l_1=0}^{M_1} \dots \sum_{l_K=0}^{M_K} \Phi(l_1, \dots, l_K) P\left(\bigcap_{k=1}^K \{C_t^k = l_k \mid p_t^k\}\right) \right]$$

$$\times P(dp_t^1 \mid \underline{y}_1) \dots P(dp_t^K \mid \underline{y}_K)$$

$$= \sum_{l_1=0}^{M_1} \dots \sum_{l_K=0}^{M_K} \Phi(l_1, \dots, l_K) \prod_{k=1}^K \int P(C_t^k = l_k \mid p_t^k) P(dp_t^k \mid \underline{y}_k)$$

A homogeneous polynomial of degree K+1 in the survival signature and posterior predictive component survival probabilities at each time point \implies can still evaluate encrypted.

T1	T2	T3	Φ	T1	T2	T3	Φ
0	0	1	0	0	1	1	0
1	0	1	0	1	1	1	0
2	0	1	0.33	2	1	1	0.67
3	0	1	1	3	1	1	1
4	0	1	1	4	1	1	1

Table 1: Survival signature for a bridge system, omitting all rows with T3 = 0, since $\Phi = 0$ for these.

Manufacturer 1

Manufacturer 1

$$\overbrace{T_1} \quad \longrightarrow \quad \underline{t}^1 \triangleq \{t_1^1, \dots, t_{n_1}^1\} \quad \longrightarrow \quad \underbrace{\prod} \quad \underbrace{\qquad \qquad } \quad \underbrace{\Xi_{,K+1} \otimes \operatorname{Enc}\left(k_p, \left\lfloor 10^\nu \int P(C_t^1 = l_1 \mid p_t^1) P(dp_t^1 \mid \underline{t}^1)\right\rfloor\right)}$$

Manufacturer 1

Manufacturer K

Manufacturer K

Example system

Figure 1: Simple automotive braking system. The master brake cylinder (M) engages all the four wheel brake cylinders (C1 - C4). These in turn each trigger a braking pad assembly (P1 - P4). The hand brake (H) goes directly to the rear brake pad assemblies P3 and P4; the vehicle brakes when at least one of the brake pad assemblies is engaged.

Experimental results

In order to examine the practicality of the problem, perform a full encrypted analysis using Amazon EC2 cloud computing service to mimic a global supply chain.

Role	Physical Server Location	Server Type	
System designer	Dublin, Ireland	m4.10xlarge	
Manufacturer C	Northern California, USA	m4.10xlarge	
Manufacturer H	São Paulo, Brazil	c3.8xlarge	
Manufacturer M	Sydney, Australia	r3.4xlarge	
Manufacturer P	Tokyo, Japan	i2.8xlarge	

Precision was set to $\nu=5$ and system designer specifies an evenly spaced time grid of 100 points $t \in [0,5]$.

Computational cost (I)

Role	Action	Timing / Size	
System designer Dublin, Ireland	Generation of (k_p, k_s)		0.3 secs
	Encryption of $\Xi^{(\Phi)}$	1 min	41.1 secs
	Saving $\Xi^{(\Phi)}$ to disk	2 min	41.3 secs
	Compressing $\Xi^{(\Phi)}$ on disk		48.0 secs
	Size of $\Xi^{(\Phi)}$ on disk	5.	5GB

Role	Action	Timing / Size	
	Generation of (k_p, k_s)		0.3 secs
System designer	Encryption of $\Xi^{(\Phi)}$	1 min	41.1 secs
Dublin, Ireland	Saving $\Xi^{(\Phi)}$ to disk	2 min	41.3 secs
Dubiiii, ileiailu	Compressing $\Xi^{(\Phi)}$ on disk		48.0 secs
	Size of $\Xi^{(\Phi)}$ on disk	5.5GB	
Transfer $\Xi^{(\Phi)}$ to Manufacturer C		11 min	37.5 secs
Manufacturer C			
Northern			
California, USA			

Computational cost (I)

Role	Action	Timing / Size	
	Generation of (k_p, k_s)		0.3 secs
System designer	Encryption of $\Xi^{(\overline{\Phi})}$	1 min	41.1 secs
Dublin, Ireland	Saving $\Xi^{(\Phi)}$ to disk	2 min	41.3 secs
Dubilli, Il ciallu	Compressing $\Xi^{(\Phi)}$ on disk		48.0 secs
	Size of $\Xi^{(\Phi)}$ on disk	5.5GB	
Transfer $\Xi^{(\Phi)}$ to Manufacturer C		11 min	37.5 secs
Manufacturer C	Decompress & load $\Xi^{(\Phi)}$ from disk	10 min	22.4 secs
Northern	Update $\Xi^{(\Phi)}$	6 min	18.3 secs
California, USA	Saving & compressing $\Xi^{(\Phi)}$ to disk	2 min	9.8 secs

Computational cost (I)

Role	Action	Timing / Size	
-	Generation of (k_p, k_s)		0.3 secs
System designer	Encryption of $\Xi^{(\overline{\Phi})}$	1 min	41.1 secs
Dublin, Ireland	Saving $\Xi^{(\Phi)}$ to disk	2 min	41.3 secs
Dubini, melanu	Compressing $\Xi^{(\Phi)}$ on disk		48.0 secs
	Size of $\Xi^{(\Phi)}$ on disk	5.5GB	
Transfe	$er\Xi^{(\Phi)}$ to Manufacturer C	11 min	37.5 secs
Manufacturer C	Decompress & load $\Xi^{(\Phi)}$ from disk	10 min	22.4 secs
Northern	Update $\Xi^{(\Phi)}$	6 min	18.3 secs
California, USA	Saving & compressing $\Xi^{(\Phi)}$ to disk	2 min	9.8 secs
Transfer $\Xi^{(\Phi)}$ to Manufacturer H		11 min	24.4 secs
Manufacturer H	Decompress & load $\Xi^{(\Phi)}$ from disk	10 min	13.2 secs
São Paulo, Brazil	Update $\Xi^{(\Phi)}$	7 min	23.1 secs
,	Saving & compressing $\Xi^{(\Phi)}$ to disk	4 min	45.2 secs
Transfer $\Xi^{(\Phi)}$ to Manufacturer M		20 min	16.5 secs
Manufacturer M	Decompress & load $\Xi^{(\Phi)}$ from disk	9 min	41.0 secs
Sydney, Australia	Update $\Xi^{(\Phi)}$	11 min	28.2 secs
	Saving & compressing $\Xi^{(\Phi)}$ to disk	2 min	54.2 secs

Computational cost (II)

Role	Action	Timing / Size	
Transfer $\Xi^{(\Phi)}$ to Manufacturer P		6 min	40.7 secs
	Decompress & load $\Xi^{(\Phi)}$ from disk	9 min	57.1 secs
Manufacturer P	Update $\Xi^{(\Phi)}$	7 min	13.5 secs
Tokyo, Japan	Compute ξ		6.1 secs
iokyo, japan	Saving & compressing ξ to disk		2.5 secs
	Size of ξ on disk	58.	.4MB
Transfer ξ to System Designer			39.5 secs
System designer	Decompress & load ξ from disk		5.9 secs
Dublin, Ireland	Decryption of ξ		8.6 secs
Total:	2 hr	18 min	38.4 secs

Result

HomomorphicEncryption R package (Aslett 2014)

```
library("HomomorphicEncryption")
p <- parsHelp("FandV", lambda=128, L=5)</pre>
k <- keygen(p)</pre>
c1 \leftarrow enc(k*pk, 2); c2 \leftarrow enc(k*pk, 3)
cres <- c1 + c2 * c1
dec(k$sk, cres)
[1] 8
cmat <- enc(k$pk, matrix(1:9, nrow=3))</pre>
cmat2 <- cmat %*% cmat
```

```
cmat < enc(k$pk, matrix(1:3, mrow=3/)
cmat2 <- cmat %*% cmat
dec(k$sk, cmat2)</pre>
```

150

```
[,1] [,2] [,3]
[1,] 30 66 102
[2,] 36 81 126
```

96

[3,] 42

Aslett, L. J. M. (2014). HomomorphicEncryption: Fully homomorphic encryption. R package version 0.1.

Aslett, L. J. M., Coolen, F. P. A., & Wilson, S. P. (2015). Bayesian inference for reliability of systems and networks using the survival signature. Risk Analysis, 35/9: 1640-51. DOI: 10.1111/risa.12228

Aslett, L. J. M., Esperança, P. M., & Holmes, C. C. (2015). A review of homomorphic encryption and software tools for encrypted statistical machine learning. University of Oxford. Retrieved from http://arxiv.org/abs/1508.06574

Coolen, F. P. A., & Coolen-Maturi, T. (2012). Generalizing the signature to systems with multiple types of components. *Complex systems and* dependability, pp. 115-30. Springer.

Gentry, C. (2009). *A fully homomorphic encryption scheme* (PhD thesis). Stanford University. Retrieved from <crypto.stanford.edu/craig>

Rivest, R. L., Adleman, L., & Dertouzos, M. L. (1978). On data banks and privacy homomorphisms. *Foundations of Secure Computation*, 4/11: 169–80.