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Motivation

Privacy and security of commercially valuable or personally
sensitive information is a growing concern in data science
applications:

• computing in a ‘hostile’ environment (e.g. cloud
computing);

• donation of sensitive/personal data (e.g. medical/genetic
studies);

• complex models on constrained devices (e.g. smart
watches);

• data sharing for inference (e.g. research
institutes/corporate partners);

• selling models without selling data (e.g. financial
instruments);

• massive pooling of sensitive data (e.g. phone app data);
• running confidential algorithms on confidential data
(e.g. engineering reliability).
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Security and privacy in data science : the challenges

Aguably, we can categorise into three intersecting challenges:

1 Keep my own data private
• have access to all the data(?)
• fitting to happen in hostile environment

2 Pool my data with others
• only release final model
• keep raw data private

3 Privacy of fitted models/predictions
• avoid information leakage
• side channel attacks
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Security and privacy in data science : the tools

1 Differential privacy
• well known and researched in statistics community
• gives privacy guarantees on randomised algorithms

2 Homomorphic encryption
• very little awareness or research in statistics community
• allows computation on encrypted data

3 Homomorphic secret sharing
• very little awareness or research in statistics community
• allows multi-party computation on data with information
theoretic security

My take: we need all three working together
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Encryption
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Encryption basics (I)

Broadly speaking, an encryption scheme consists of:

• Unencrypted object, m, referred to as a message.
• Encrypted version, c, referred to as a cipher text.
• Single (ks) ∈ Ks, or pair (ks, kp) ∈ Ks × Kp, of ‘keys’.

• Single key means secret key scheme;
• Pair of keys means public key scheme.

• Two algorithms
• Enc, taking kp and m to produce c.
• Dec, taking ks and c to produce m.

• Enc and Dec satisfy:

m = Dec(ks, Enc(kp, m)) ∀ m ∈ M
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Encryption basics (II)

Fundamental idea …

Enc(kp, m) � c

Easy

Hard without ks

Dec(ks, c) = m

The security level of an encryption scheme is the order of the
number of operations required to crack it (decrypt without ks).

Clearly, an upper bound on the security of an encryption
scheme is O(|Ks|), since a brute force attack which tries every
possible secret key will succeed.
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Concepts: Public key -vs- private key

Presumably public key schemes are always better: can just
choose not to distribute kp?

Not really. Public key schemes tend to:

• have much larger cipher texts than messages, so are space
inefficient.

• have greater computational cost, so are compute
inefficient.

• rely on complex mathematical constructions rather than
bit-level operations, so are hard to design custom
hardware for.

Hence, private key schemes still involved in almost all
cryptography, perhaps wrapped in a public key scheme. More
anon …
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Concept: Semantic security

Definition (Semantic security)
An encryption scheme is said to be semantically secure if
knowledge of the cipher text for some message has vanishingly
small probability of revealing further information about any
other encrypted message.

Informally: repeated encryption of same message renders
different and seemingly unrelated cipher texts with high
probability.

Why do we care? For private key scheme you don’t. However, in
a public key scheme where |M | ≪ |Ks| or probable messages
are known, an attacker can perform a ‘chosen plaintext attack’
if not semantically secure — simply encrypt using the public
key and compare.
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Homomorphic Encryption
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Encryption the solution?
Encryption can provide security guarantees …

Enc(kp, m) � c

Easy

Hard without ks

Dec(ks, c) = m

… but is typically ‘brittle’.

Rivest et al. (1978) proposed encryption schemes capable of
arbitrary addition and multiplication may be possible. Gentry
(2009) showed first fully homomorphic encryption scheme.

+
m1 m2 m1 +m2
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Limitations of homomorphic encryption

1 Message space (what we can encrypt)
• Commonly only easy to encrypt
binary/integers/polynomials

2 Cipher text size (the result of encryption)
• Present schemes all inflate the size of data substantially
(e.g. 1MB → 16.4GB)

3 Computational cost (computing without decrypting)
• 1000’s additions per sec
• ≈ 50 multiplications per sec

4 Division and comparison operations (equality/inequality
checks)

• Not possible in current schemes!
5 Depth of operations

• After a certain depth of multiplications, need to ‘refresh’
cipher text: hugely time consuming, so avoid!

See accessible intro in L. Aslett et al. (2015a).
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We really are doing data science blindfolded …
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Existing implementations

• libfhe (Minar 2010) compact single C file library
implementing Gentry (2010)

• ‘Scarab’ (Perl et al. 2011) low level C library implementing
Smart & Vercauteren (2010)

• ‘HELib’ (Halevi & Shoup 2014) most impressive library, in
C++ implementing Brakerski et al. (2012) and lots beyond
the bare bones cryptography (i.e. Polynomial Chinese
Remainder Theorem + automorphisms)

• more besides …

However, these all tend to be very low-level libraries.
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HomomorphicEncryption R package (Aslett 2014)

All core code in high-performance multi-threaded C++, but
accessible via simple R functions and overloaded operators:

library(”HomomorphicEncryption”)

p <- pars(”FandV”)
k <- keygen(p)
c1 <- enc(k$pk, c(42,34))
c2 <- enc(k$pk, c(7,5))
cres1 <- c1 + c2
cres2 <- c1 * c2
cres3 <- c1 %*% c2
dec(k$sk, cres1)
dec(k$sk, cres2)
dec(k$sk, cres3)

Demo
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Encrypted Machine Learning
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Machine Learning Encrypted?

Lots of constraints! Are traditional data science techniques out
of reach to run on encrypted data?

Here we’ll cover the basics of a novel variant of random forests
(see L. Aslett et al. (2015b) for full mathematical details).

So, want to build a random forest on encrypted data … but,

• No comparisons possible to evaluate splits
• No max possible to find highest class vote
• No division possible to do average votes
• …

Thus random forests (and other methods) need to be tailored
for encrypted computation. This is where statistics and
machine learning community can get involved!
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Completely Random Forests (CRFs) — Data encoding

1

xij � R 0 0 0 01
B quantiles

2 Then,

I(xij ≤ bl) =
l∑

k=1
xijk and I(xij > bl) =

B∑
k=l+1

xijk

3 Similarly encode response category c, yi → yic ∈ {0, 1}.
4 Build a decision tree selecting variable j and split point bl

completely at random to a fixed depth.
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Completely Random Forests (CRFs) — Tree ‘fitting’, I

Exactly one terminal leaf indicator evaluates to 1, encrypted.
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Completely Random Forests (CRFs) — Tree ‘fitting’, II

xij2

xij1
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Completely Random Forests (CRFs) — Tree ‘fitting’, II

xij2

xij1

� b(j2)
l2

> b(j2)
l2

� b(j1)
l1

� l1�

k=1

xij1k

� � l1�

k=1

xij1k

�� l2�

k=1

xij2k

� �

�
B�

k=l2+1

xij2k

�

��ic = yic �ic = yic

NB Must evaluate all branches and categories as blindfold.
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Completely Random Forests (CRFs) — Prediction

Prediction involves:

• evaluating a new observation through all branches;
• taking product with corresponding vote totals for each
class;

• summing across trees and across leaves to get total votes
for each class.

But, confused leaves with many votes can overwhealm certain
ones with few. Random Forests usually use:

1 single vote per tree (requires comparison to find max)
2 relative class frequencies (requires division)

… developed novel ‘stochastic fraction estimate’, an
approximation to 2. See paper for details.
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ones with few. Random Forests usually use:

1 single vote per tree (requires comparison to find max)
2 relative class frequencies (requires division)

… developed novel ‘stochastic fraction estimate’, an
approximation to 2. See paper for details.
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Results
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Computational considerations

Note that CRFs are parallelisable right down to the individual
observation, which helps with ameliorating the cost of
encrypted computation.

Wisconsin data (N = 547)

• Launched
2 × 18 servers × 32 cores = 1, 152 CPU
core cluster on Amazon EC2
⇒ 576 Dublin & 576 São Paulo

• Fit 50 trees in Dublin, 50 in São Paulo
• unique set.seed() for each region

• Data split into 17 shards of 32 obs + 1
shard 3 obs ⇒ 1 datum per core!

• Reduction sum of votes in each region and
combine regions ⇒ 100 tree forest

1h 36m

US$ 23.86
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More Private Data Science
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Encrypted naïve Bayes (L. Aslett et al. 2015b)

• Naïve Bayes classifier usually solves classification using a
generative approach, i.e. by modelling the distribution of
the predictors (Ng & Jordan 2002).

• We show possible to model decision boundary between
response classes explicitly (without parametric model)
while still remaining in the naïve Bayes framework.

• Involves a simple approximation to iteratively reweighted
least squares for logistic regression.

• Typically underperforms completely random forest
method, but faster to fit.
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Encrypted linear modelling (Esperança et al. 2017)

y = Xβ + ε, εi ∼ N(0, σ2)

Using coordinate descent accelerated by van Wijngaarden
transformation.
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Secure multi-party system reliability (Aslett 2016)

Inference on system/network reliability whilst maintaining
privacy requirements of all parties.
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Approximate Bayesian Computation Done Encrypted
(ABCDE) — pending preprint

• Eve has a private model, including prior information
which may itself be private.

• Cain and Abel have private data which is relevant to the
fitting of Eve’s model.

Can Eve fit a model, pooling data from Cain and Abel without
observing their raw data and without revealing her model and
prior information? Abel also doesn’t trust Cain …

�(· | �)
�(�)

{xi = (xi1, . . . , xid)}n1

i=1

{xi = (xi1, . . . , xid)}Ni=n1+1
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Confidential MCMC — pending preprint

If the model and prior are not private (only the data), we can
perform exact pooled Bayesian inference using MCMC, with the
Metropolis-Hastings acceptance decision for a proposal θi → θ′

made privately:

With probability α(θi, θ′) set θi+1 = θ′, else set θi+1 = θi where
α(θi, θ′) = min {1, r(θi, θ′)} with

r(θi, θ′) := π(θ′)q(θi | θ′)
π(θi)q(θ′ | θi)

Homomorphic Secret Sharing + Differential Privacy
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Shameless plug! Knowledge Transfer Partnership

Forthcoming KTP associate job, based at Atom Bank working
with me and Camila Caiado at Durham University.

Jointly working with Computer Science KTP associate based at
Atom and working with Newcastle University.

Statistical modelling and encrypted statistics for mortgage
books.

Expected to advertise for a September – October 2018 start.
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