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Reliability theory

Reliability theory is concerned with quantification of the
uncertainty in the lifetime of components and systems of
components using probability theory.

Leads to questions of:

optimal system design; *

inference given test data; **

extreme value modelling;

maintenance schemes;

renewal theory & stochastic models of repair;

shock models;

An interesting mixture of probability, statistics and applied
work. (* = today)



o Interest lies in the reliability of ‘systems’ composed of
numerous ‘components’.
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o Interest lies in the reliability of ‘systems’ composed of
numerous ‘components’.
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o Lifetime of the system, 7, is determined by:

« the lifetime of the components, T; ~ Fr,(-; ;)
 the structure of the system.
o the possible presence of a repair process.

via the structure function or signature or survival signature.
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Structural Reliability Theory

o Interest lies in the reliability of ‘systems’ composed of
numerous ‘components’.

o0 52 oo}

o Lifetime of the system, 7, is determined by:

« the lifetime of the components, T; ~ Fr,(-; ;)
 the structure of the system.
o the possible presence of a repair process.

via the structure function or signature or survival signature.

Statistical
Inference

Probabilistic
Analysis
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Outline of talk

We will necessarily take a narrowly curated path through a
small subset of reliability theory from absolute basics up to a

simple example of recent research, but should give a flavour of
the field.

@ Failure models for components (1930s);

o survival function;
o hazard & failure rate;
« IFR/DFR.

® Tools to analyse system structure

« structure function (1960s);
« signature (1980s);
« survival signature (2010s).

® Topological inference and Bayesian posterior predictive
system lifetime (2012/3).
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Component lifetimes

A component is defined to be any part of a system which is
atomic from the perspective of a reliability analysis, meaning no
constituent parts of the unit are modelled directly, only the unit
as a whole. Note that a ‘component’ may itself be a system.

Thus, the lifetime T of a component is modelled directly by
some lifetime (probability) distribution, typically with support
[0,00).

« Exponential

o Gamma

o Weibull

o Gompertz

o Coxian

e Phase-type
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Survival function & hazard

In reliability, rather than focusing on the lifetime (probability)
density or distribution directly, interest is typically in the
survival function:

Fr(t) :=P(T>t)=1- Fr(t)

and the hazard rate:

. P<T<t+68[T>8) 1 OF(t)  fr(¥)
Ay = Jlim, 5 T Ty ot Py

The hazard rate is the instantaneous risk of failure and
encapsulates the changing failure characteristics with time.

During expert elicitation the hazard rate can be crucial to
ensure that the correct lifetime attributes can be captured by
the chosen distribution.
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Hazard rates

« IFR (increasing failure rate)

<= F'p(t) is log-concave

= Fr(t) is a Pdlya frequency function of order 2.
« IFRA (increasing failure rate average)

— integrated hazard is a star-shaped function.

« NBU (new better than used)
<~ FT(t—I— 5) > FT(t) FT(5) Vo>0

IFR c IFRA C NBU



Hazard rates

« IFR (increasing failure rate)

<= F'p(t) is log-concave

= Fr(t) is a Pdlya frequency function of order 2.
« IFRA (increasing failure rate average)

— integrated hazard is a star-shaped function.

« NBU (new better than used)
<~ FT(t—I— 5) > FT(t) FT(5) Vo>0

IFR c IFRA C NBU

For example, the Exponential distribution is very special,
having constant hazard. This is a direct relation to the
memoryless property. It corresponds to a component which
isn’t subject to any burn-in or wear and tear and sits at the
boundary of all the classes of distribution: it is IFR, IFRA,
NBU, DFR, DFRA and NWU!
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The structure function

Initially, we consider component and system operation at only a
snapshot in time.

.. consider a system of components i, ..., z, where x; € {0,1}
denotes operation or failure of component 4.

Birnbaum proposed the structure function for system analysis.

Definition (structure function)

When the state of a system is dependent only on the state of
the constituent components, then the binary random variable,
¢, denoting operation of the system is a functional of the
component states.

¢ :=o(X1,...,Xp)

The mapping ¢ : {0,1}" — {0, 1} is called the structure
function of the system.
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Simple systems

The structure function for series and parallel systems is trivial.

1
2
—O0—0----0—
1 2 n
n
For the series structure:
n
©(z) = min(zy, ..., z,) = H T
=1
and the parallel system has structure function:
n
o(z) = max(zy,...,z,) =1 — H(l — ;)
=1

and combinations thereof ...
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Bridge system

Not hard to construct examples for which decomposing into
series and parallel subsystems doesn’t work.

o(z) = 2120 + 1324 + T1 2475 + T35 — T T2T3T5
— T1T3TAL5 — T1T2T4T5 — T X2X3%4 — LT3 T4 L5

+ 21‘1 T2 X34 X5
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Path/cut sets

Definition ((Minimal) path set)

A set of components, P, of a system is said to be a path set if
the system functions correctly whenever all the components in
P function correctly.

If no proper subset of P is a path set, then P is said to be a
minimal path set.

Definition ((Minimal) cut set)

A set of components, C, of a system is said to be a cut set if the
system is failed whenever all the components in C have failed.
If no proper subset of C'is a cut set, then C'is said to be a
minimal cut set.
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Path/cut sets

For bridge system:

P ={{1,2},{3,4},{1,4,5},{2,3,5}}
C={{1,3},{2,4},{1,4,5},{2,3,5}}
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Path/cut sets

For bridge system:

P ={{1,2},{3,4},{1,4,5},{2,3,5}}
C={{1,3},{2,4},{1,4,5},{2,3,5}}

Lemma

Let P be the collection of all minimal path sets of a system. If X
is the set of currently operational components, then the system
as a whole is operational if and only if 3 P; € P s.t. P, C X

Stmilarly, let C be the collection of all minimal cut sets of a
system. If X is the set of currently failed components, then the
system as a whole is failed if and only if 3 C; € C s.t. C; C X



Struc Fn
0000080000

Path/cut sets & the structure function

Theorem

The structure function of a system with collection of all
minimal path sets Py,... P, and collection of all minimal cut
sets Ch,..., Cs can be expressed in terms of the components of
either:

T

90(15):1—1_[ 1—H$i

j=1 i€ P;

S

=II(1-J]Ct—=

=1 i€ C]‘
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Pause to ask some obvious questions

@ Does every possible structure function mapping
¢ :{0,1}™ — {0,1} correspond to some real-world system?

® Does the structure function posses any probabilistic
properties?

® If so, can we answer all the interesting questions like the
closure of systems of IFR/DFR/IFRA components?

@ In what sense do path/cut sets characterise systems?



Struc Fn
0000008000

Pause to ask some obvious questions

@ Does every possible structure function mapping
¢ :{0,1}™ — {0,1} correspond to some real-world system?

NO

® Does the structure function posses any probabilistic
properties?

® If so, can we answer all the interesting questions like the
closure of systems of IFR/DFR/IFRA components?

@ In what sense do path/cut sets characterise systems?



Struc Fn
0000008000

Pause to ask some obvious questions

@ Does every possible structure function mapping
¢ :{0,1}™ — {0,1} correspond to some real-world system?

NO

® Does the structure function posses any probabilistic
properties?
YES, under independence of components, hy(-). But, can’t

answer things like stochastic ordering easily.

® If so, can we answer all the interesting questions like the
closure of systems of IFR/DFR/IFRA components?

@ In what sense do path/cut sets characterise systems?



Struc Fn
0000008000

Pause to ask some obvious questions

@ Does every possible structure function mapping
¢ :{0,1}™ — {0,1} correspond to some real-world system?

NO

® Does the structure function posses any probabilistic
properties?
YES, under independence of components, hy(-). But, can’t

answer things like stochastic ordering easily.

® If so, can we answer all the interesting questions like the
closure of systems of IFR/DFR/IFRA components?

NO. Barlow & Proschan did prove closure under IFRA.

@ In what sense do path/cut sets characterise systems?



Struc Fn
0000008000

Pause to ask some obvious questions

@ Does every possible structure function mapping
¢ :{0,1}™ — {0,1} correspond to some real-world system?

NO

® Does the structure function posses any probabilistic
properties?
YES, under independence of components, hy(-). But, can’t

answer things like stochastic ordering easily.

® If so, can we answer all the interesting questions like the
closure of systems of IFR/DFR/IFRA components?

NO. Barlow & Proschan did prove closure under IFRA.

@ In what sense do path/cut sets characterise systems?

All possible cut/path sets = all coherent systems
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Coherency

Definition (Relevant component)

Consider a system of order n with state vector of components
(x1,...,Ti—1, Y, %41, ..., T,). The ith component Y is said to be
irrelevant if:

o(Ty oy 2m1,0, Tig1, - ooy Tn) = (X1, ooy Tim1, 1, Tig1, - -+ Tn)

for all possible realisations of

(1, ..\ Tie1, Tip1, - - -, Tn) € {0,137 1

If a component is not irrelevant, it is defined to be a relevant
component.
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Coherency

Definition (Monotone structure function)

The structure function ¢(-) of an order n system is said to be
monotone if

z<y = ¢(z) < o(y)

where z, y € {0,1}" and the inequality on the left is taken
element-wise.

Definition (Coherent system)

A system is coherent if and only if the structure function
representing the system is monotone and every component is
relevant.

Coherency restricts the number of systems significantly.
3 22° = 256 mappings ¢ : {0,1}3 — {0, 1}, but there are only 5
coherent systems order 3.
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Butterworth’s set theoretic treatment

It’s possible to completely characterise coherent systems purely
by cut and path sets.

Theorem (Minimal cut-sets = coherent systems)

If a coherent system ¢ has collection of all minimal cut sets C,
then UCieC C; is the set of all components in ¢.

Conversely, any collection of sets C such that
Ci ¢ Cj, Y C;, C; € C defines a collection of minimal cut sets of
some coherent system comprising the components UCZEC C;.
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Butterworth’s set theoretic treatment

It’s possible to completely characterise coherent systems purely
by cut and path sets.

Theorem (Minimal cut-sets = coherent systems)

If a coherent system ¢ has collection of all minimal cut sets C,
then Uciec C; is the set of all components in ¢.

Conversely, any collection of sets C such that
Ci ¢ Cj, Y C;, C; € C defines a collection of minimal cut sets of
some coherent system comprising the components UCieC C;.

Replace ‘cut set’ with ‘path set’ and above statement still true.

Definition (Duality)

Coherent system A is the dual of coherent system B if the
minimal path sets of A are the minimal cut sets of B (and
vice-versa).



Signature
[ JeJele]

Do we need anything more?

Job done? :)
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Do we need anything more?

Job done? :(

Not really. On the face of it, the reliability function enables all
statements of probability about the reliability of a system in a
particular structure, but theoretical analysis of general system
structures by this route is very difficult. Hence the answer ‘no’
to question 3 earlier.

Moreover, even for concrete structures it gets messy very fast
. > 5 components in a non-trivial arrangement and the
algebra is plain nasty.

On top of that, there is something mathematically unsatisfying
about our main tool for systems not being invariant to
relabelling of components!

Fast-forward to 1982 and enter the signature ...
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System signature

Samaniego was trying to understand closure properties of
systems more deeply when he came up with an improved
approach, the signature.

Definition (System signature)

Consider a coherent system of order n, with independent and
identically distributed component lifetimes. The signature of
the system is the n-dimensional probability vector
s=(s1,...,8,) with elements:

S§; = P(T = Tzn)

where 7 is the failure time of the system and T}, is the ith
order statistic of the n component failure times.
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Signature examples

All order 4 coherent systems with graph representation.

System . System .
Topology Signature Topology Signature
——o—o—o—  (1,0,0,0) LHor (0, 5.5.0)

—o—ofgh (3:50,0) fo oot (0,34 1)

ot (L L0 | gt LY

SO X B I = S (U )
{8:8} 2 1

(0737370) % (0’0’0’1)
goF (0,:3:0)
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An important property

Signatures lead to many useful results. One is:

Theorem

Let Tl,...

coherent system with signature s. Let T be the system lifetime.
Then,

, T, ~ T be the iid component lifetimes of an order n

n

—1

F () =Pr>8=> sy ( ) (&Y Fr(9™
=1 7=0

If additionally Fr(-) is absolutely continuous then,

n

(0= ~(©/00R(r > ) = s () Fa()™ Pty a0

=1



Multiple components?

Most systems have more than one type of component! So can
we extend the signature?

Let there be K component types, k€ {1,..., K}, with my
components of type k in the system.

Define q,(ji) :=P(r = T%. ), and:

Tk

= (q(1),.. ., q1(m), @2(1),..., @2(m2), ..., qx(1),. .., qx(mK))

K my

— P(r>1T)= Zquk T oy > 1)

k=1 ]k 1

Seems to achieve the same structure/lifetime separation, just
need to be able to compute everything.
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Not so fast ... computing g(ji) painful

Let K = 2,

n(j) =Pt = Tj.m,)

m2
§ : L 1

= [P(T = lezml | T?QZ’ITLQ < Tj1:m1 < j2+1:m2)
J2=0

x P(T2 ., < T .. <T

J2:mg J1ima ]2—1—1:7712)]

Non-trivial to compare order statistics of two different
distributions. For a general K component system, need to

derive comparisons of
K

H(ml +1)
=1
#j

for order statistics from different probability distributions.
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Notation change

In a system with K different component types, it becomes useful
to change (without loss of generality) the vector of components
notation so as to group components of the same type:

z:=(a},...,25)
where 2* is the vector of components of type k€ {1,..., K},
Qk = (I]faalﬁ@k)

Thus there are my components of type k in the system.
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Simplifying signatures

Coolen rethought signatures with the objective of separating
structure and component lifetimes for multiple components.

Definition (System survival signature)

Consider a system comprising K component types, with my
components of type k € {1,..., K}. Then the system survival
signature ®(ly, ..., lg), with I € {0,1,..., my}, is the
probability that the system functions given precisely I of its
components of type k function.

O, .. Ix) = [ﬁ (m’“>_1] > e

where S, . ={z: Y =1l VEk}

)



System lifetime

Now, letting C* € {0,1,..., m;} be the RV denoting the
number of components of type k in the system which function
at time ¢ > 0, it is possible to write the system lifetime in terms
of the distributions of component type lifetimes. If Fy(¢) is the
distribution of component &’s lifetime, then

m mi K
P(r>t) = Z Z‘P(lh---,lK)P (ﬂ{df:lk}>

l1=0 lg=0 k=1
mi1 mg
IR

=0 Ix=0

¥ Mg my—l, [ T, Ui
@(11,...,1K>H( )[Fk(t)] [Fx(8)]

l
=1 Nk
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2013 : Bayesian inference with survival signature

Test data available on components considered exchangeable
with those to be used in a system.

Objective: inference on system/network reliability.

@ - tl::{tiﬂ“‘?tin} -
@ — tF =t —
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A nonparametric model of components

At a fixed time ¢, probability component of type k functions is
Bernoulli(pf) for some unknown p¥.

= number functioning at time ¢ in iid batch of ny is
Binomial(ng, pf).
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Let S’f € {0,1,...,nt} be number of working components in test
batch of ng components of type k. Then,

SF ~ Binomial(ng, p¥) Vit >0



Sys Inference
O@0000000

A nonparametric model of components

At a fixed time ¢, probability component of type k functions is
Bernoulli(pf) for some unknown p¥.

= number functioning at time ¢ in iid batch of ny is
Binomial(ng, pf).

Let S’f € {0,1,...,nt} be number of working components in test
batch of ng components of type k. Then,

SF ~ Binomial(ng, p¥) Vit >0

Given test data t* = {#},..., t]flk}, for each t we can form

corresponding observation from Binomial model

ny;
sf=> "1(th>1)
=1
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Bayesian inference for nonparametric model

Taking prior p¥ ~ Beta(a¥, 8F), exploit conjugacy result
pi | s ~ Beta(af + sf, 57 + i, — 5¢)

Then, posterior predicitive for number of components surviving
in a new batch of my components is

C% | sF ~ Beta-binomial(my, af + s&, BF + ny, — sF)
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Bayesian inference for nonparametric model

Taking prior p¥ ~ Beta(a¥, 8F), exploit conjugacy result
pi | s ~ Beta(af + sf, 57 + i, — 5¢)

Then, posterior predicitive for number of components surviving
in a new batch of my components is

C% | sF ~ Beta-binomial(my, af + s&, BF + ny, — sF)

Summary: for any fixed f, s]tg provides a minimal sufficient

statistic for computing posterior predictive distribution of the
number of components surviving to ¢ in a new batch, without
any parametric model for component lifetime being assumed.
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Propagating uncertainty to the system

Now take collection of component types k € {1,..., K}, each
with test data ¢t = {#!,...,#*}, and corresponding collection of
minimal sufficient statistics for a fixed ¢, {s},...sK}.
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Propagating uncertainty to the system

Now take collection of component types k € {1,..., K}, each
with test data ¢t = {#!,...,#*}, and corresponding collection of
minimal sufficient statistics for a fixed ¢, {s},...sK}.

Survival probability for a new system 7% comprising these
component types follows naturally via posterior predictive and
survival signature:

P(r* >t]st,. K)

/ / T >t|pt7' pt) (pt|8t) (pf\S{()dp%...dpf
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Propagating uncertainty to the system

Now take collection of component types k € {1,..., K}, each
with test data ¢t = {#!,...,#*}, and corresponding collection of
minimal sufficient statistics for a fixed ¢, {s},...sK}.

Survival probability for a new system 7% comprising these
component types follows naturally via posterior predictive and
survival signature:

P(t* > t|st,... sl

= [ [ g PG D PO ) dp
ST 1) S STTRATI (g IERI)

=0 Ig=0
(pt\st)...P(pt \st)dpt...dpt
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P(T* > t| s}, ... s

Z/---/P(T*>tlp%,'..pf()P(p%\S%)--'P(pf(Sf()dp%.--dpf{

R

=0 Ig=0

(Ly.. .\l (ﬂ{ck lk|Pt )

P(pt|st)... P(pf | s) dp; ... dpf

mi mg
SIS Y T H/ = Ll PGk | )
h= lx=0

0

Final integral is simply the posterior predictive (Beta-binomial).
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System survival probability

P(T*>t|8%,...8{<)
_Z Z (i, ..., Ik

l1=0 lg=0

y ﬁ (mk> B(lx + of + s& my, — I + BF + nj, — )
B(ay + sp, B + i — sf)

Incredibly easy to implement this algorithmically since survival
signature has factorised the survival function by component
type. Exercise for the viewer to convince themselves the same is
not practical with the structure function!
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Example system layout, K =4, n =11

Example system:

Ty ~ Exp(\ = 0.55)

T2 ~ Wei()\g = 1.8,’)/1 == 22)

Ty ~ Log-N(u = 0.4, 7 = 1.234)

T4 ~ Gam()\g = 0.9,’)/2 = 3.2)

Simulated test data with ny = 100 V k



Survival Probability

1.00

0.75

0.50

St

0.00

Item
— System
----T1
-=-T2
--T3

- T4
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Posterior predictive survival curves

1.00 =

Item

— Ground Truth
0.50 = --- Non-parametric

——+ Parametric

Survival Probability

o
T
1

0.00 =




Optimal redundancy?

1.00 - Redundancy
— Comp 1
---- Comp 10

==+ Comp 11

- - Comp 2
++++ Comp 3
0.50 = +=+ Comp 4
— - Comp 5

-—- Comp 6

Survival Probability

+==+ Comp 7

— Comp 8
— Comp 9

-=- None
0.00 =
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Optimal redundancy?

Redundancy
s — Comp 7
===+ Comp 8

Order

—=- None
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2012 : Topological inference with masked lifetime data

Yo > 3.1 y; =31



t=y3=1y23 =231
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2012 : Topological inference with masked lifetime data
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2012 : Topological inference with masked lifetime data
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2012 : Topological inference with masked lifetime data




1,0,0
( ) (37370) (0 139 g) (0,071)

It is possible to then compute the necessary block/full
conditionals to make a data augmentation scheme which
explores some set of proposed topologies, M.
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