Bayesian inference for reliability of systems and networks using the survival signature

Frank Coolen, Louis Aslett

Durham University

12 March 2014

Joint work with Simon Wilson (Trinity College Dublin)

Paper: revision invited by Risk Analysis

⊒ →

Image: A math

System with $K \ge 2$ types of components

 m_k components of type $k \in \{1, 2, ..., K\}$, with $\sum_{k=1}^{K} m_k = m$

State vector $\underline{x} = (\underline{x}^1, \underline{x}^2, \dots, \underline{x}^K)$, with $\underline{x}^k = (x_1^k, x_2^k, \dots, x_{m_k}^k)$ the sub-vector representing the states of the components of type *k* with $x_i^k = 1$ if the *i*th component of type *k* functions and $x_i^k = 0$ if not.

Structure function $\phi(\underline{x}) = 1$ if system functions with state \underline{x} and $\phi(\underline{x}) = 0$ if not.

Assume: $\phi(\underline{x})$ is not decreasing in any of the components of \underline{x} ('coherent system') and $\phi(\underline{0}) = 0$ and $\phi(\underline{1}) = 1$. (This assumption can be deleted)

Survival signature

The Survival Signature $\Phi(l_1, l_2, ..., l_K)$, with $l_k = 0, 1, ..., m_k$, is the probability that a system functions given that *precisely* l_k of its components of type *k* function, for each $k \in \{1, 2, ..., K\}$.

There are $\binom{m_k}{l_k}$ state vectors \underline{x}^k with precisely l_k of their m_k components $x_i^k = 1$, so with $\sum_{i=1}^{m_k} x_i^k = l_k$.

Let $S_{l_1,...,l_K}$ denote the set of all state vectors for the whole system for which $\sum_{i=1}^{m_k} x_i^k = l_k$, k = 1, 2, ..., K. Assuming exchangeability of the failure times of the m_k components of type k

$$\Phi(l_1,\ldots,l_K) = \left[\prod_{k=1}^K \binom{m_k}{l_k}^{-1}\right] \times \sum_{\underline{x}\in S_{l_1,\ldots,l_K}} \phi(\underline{x})$$
University
University

Probability system functions at time t

Let $C_t^k \in \{0, 1, ..., m_k\}$ denote the number of components of type k in the system that function at time t > 0. If the probability distribution for the failure time of components of type k is known and has CDF $F_k(t)$, and we assume failure times of components of different types to be independent, then the probability that the system functions at time t > 0 is

$$P(T_{S} > t) = \sum_{l_{1}=0}^{m_{1}} \cdots \sum_{l_{K}=0}^{m_{K}} \Phi(l_{1}, \dots, l_{K}) P(\bigcap_{k=1}^{K} \{C_{t}^{k} = l_{k}\}) = \sum_{l_{1}=0}^{m_{1}} \cdots \sum_{l_{K}=0}^{m_{K}} \left[\Phi(l_{1}, \dots, l_{K}) \prod_{k=1}^{K} \left(\binom{m_{k}}{l_{k}} [F_{k}(t)]^{m_{k}-l_{k}} [1 - F_{k}(t)]^{l_{k}} \right) \right]$$

Durham

Example

Figure: System with 2 types of components

I_1	l_2	$\Phi(l_1, l_2)$	I_1	l_2	$\Phi(I_1, I_2)$
0	0	0	2	0	0
0	1	0	2	1	0
0	2	0	2	2	4/9
0	3	0	2	3	6/9
1	0	0	3	0	1
1	1	0	3	1	1
1	2	1/9	3	2	1
1	3	3/9	3	3	1

Table: Survival signature of this system

A B +
 A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Coolen FPA, Coolen-Maturi T (2012) On generalizing the signature to systems with multiple types of components. *Complex Systems and Dependability*, W Zamojski et al. (Eds.), Springer 115-130.

Coolen FPA, Coolen-Maturi T, Al-nefaiee AH (2014) Nonparametric predictive inference for system reliability using the survival signature. *Journal of Risk and Reliability*, to appear.

Coolen FPA, Coolen-Maturi T (2014) Modelling uncertain aspects of system dependability with survival signatures. *Edited Volume, Springer*, to appear.

< ロ > < 同 > < 回 > < 回 >

Networks

We consider basic networks with one type of nodes and one type of links; both nodes and links can be unreliable.

Figure: Topology of a simple network of 4 nodes and 7 links. Start and end nodes are shaded and assumed to function always.

Figure: The same network with links represented as nodes so that nodes are the only unreliable components.

In this simple case, assume that there are m_N nodes and m_L links in the network, and let $m = m_N + m_L$. The state vector is then $\underline{x} = (\underline{x}_N, \underline{x}_L) \in \{0, 1\}^m$, with $\underline{x}_N = (x_{N1}, \dots, x_{Nm_N})$ representing the state of the nodes and $\underline{x}_L = (x_{L1}, \dots, x_{Lm_L})$ representing the state of the links. The system state is $\phi(\underline{x})$.

The survival signature for I_N nodes and I_L links is

$$\Phi(I_N, I_L) = {\binom{m_N}{I_N}}^{-1} {\binom{m_L}{I_L}}^{-1} \sum_{\underline{x} \in S_{I_N I_L}} \phi(\underline{x}),$$

where $S_{I_N I_L} = \{\underline{x} \mid \sum_{i=1}^{m_N} x_{Ni} = I_N, \sum_{i=1}^{m_L} x_{Li} = I_L\}$ is the set of node and link states where exactly I_N nodes and I_L links are working.

(Durham 2014)

The reliability function of the network, where nodes and links have failure time distribution functions $F_N(t)$ and $F_L(t)$ respectively, is

$$P(T_{S} > t) = \sum_{I_{N}=0}^{m_{N}} \sum_{I_{L}=0}^{m_{L}} \Phi(I_{N}, I_{L}) \times \\ \binom{m_{N}}{I_{N}} [F_{N}(t)]^{m_{N}-I_{N}} [1 - F_{N}(t)]^{I_{N}} \times \\ \binom{m_{L}}{I_{L}} [F_{L}(t)]^{m_{L}-I_{L}} [1 - F_{L}(t)]^{I_{L}}$$

I_N	I_L	$\Phi(I_N, I_L)$	I_N	I_L	$\Phi(I_N, I_L)$	I_N	I_L	$\Phi(I_N, I_L)$
2	3	0.014	3	3	0.043	4	3	0.086
2	4	0.057	3	4	0.171	4	4	0.343
2	5	0.143	3	5	0.393	4	5	0.714
2	6	0.286	3	6	0.643	4	6	0.857
2	7	0.500	3	7	0.750	4	7	1

Table: Survival signature for network ($\Phi(I_N, I_L) = 0$ when not shown)

Image: A math a math

Bayesian inference for system reliability using the survival signature....

A 10

(Durham 2014)

Survival signature

15 / 15