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1. Introduction

.

Analysing the reliability of large and com-
plex engineered systems can be computation-
ally challenging, especially in the context of
many differing types of component.

In this poster we demonstrate a natural map-
ping of MLMC onto the simplest possible re-
liability problem of estimating a functional
of expected system lifetime, providing orders
of magnitude speedup compared to textbook
brute-force approaches.

This points to the potential for wider use of
multi-levelmethods throughout reliability the-
ory.

.
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3. MLMC (see Giles, 2015)

.

Consider a sequence of estimators T0, T1, . . . ,
which approximates TL with increasing accu-
racy, but also increasing cost. By linearity of
expectation,

E[TL] = E[T0] +
L∑

ℓ=1

E[Tℓ − Tℓ−1],

and therefore we can use the following unbi-
ased estimator for E[TL],
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Level ℓ in the superscript (ℓ, n) indicates that
samples used at each level are independent, but
crucially the differences use common samples.
Note, 'correction' since each Tℓ generally not
unbiased estimate.

Let σ2
0 , σ

2
ℓ and cost0, costℓ be the variance and

expected cost of one sample of T0, Tℓ−Tℓ−1 re-
spectively. Then, overall for multi-level:

costMLMC =
L∑

ℓ=0

Nℓ · costℓ

σ2
MLMC =

L∑
ℓ=0

N−1
ℓ · σ2

ℓ

∴ for accuracy ε > 0, costMLMC minimised when
Nℓ ∝ σℓ/

√
costℓ

=⇒ costMLMC = ε−2

(
L∑

ℓ=0

σℓ

√
costℓ

)

Provided cost increases slower than variance
decreases, can achieve savings.

.

4. mlmc R package

.

The mlmc R package (Aslett et al., 2016) pro-
vides an easy to use interface which automates
much of the MLMC estimation process.

User simply needs to define a level sampler
which is provided to the mlmc() function.

All standard graphical diagnostics easily plot-
ted via overloaded plot() function on MLMC
result object.

.

2. System lifetime simulation

.

Cut sets: A set of components, C, is a cut set of
the system if the system is failed whenever all
the components in C are failed.
A cut set is said to be aminimal cut set if no sub-
set of it is also a cut set.
Set of all minimal cut sets, C, characterises the
operational state of a system completely.

System lifetime: (Barlow and Proschan, 1981)

TS = min
C∈C

{
max
c∈C

{Tc}
}
.

Thus, the failure time for the systemdepends on
the system structure (via C) and the failure time
distributions for each node.

Standard Monte Carlo:

E[f(TS)] ≈ În :=
1

n

n∑
i=1

f

(
min
C∈C

{
max
c∈C

{t(i)c }
})

where t(i)c ∼ Fc(·). În ∼ N(µ, σ/
√
n)

∴ accuracy ε > 0 with α% confidence requires
n = z2α/2σ

2ε−2 =⇒ costMC = σ2 · ε−2 · |C|

∴ runtime depends on:
1. variance of the estimator;
2. target accuracy of the estimate;
3. number of cut sets.

Cheat? Use subset C′ ⊂ C =⇒
min
C∈C′

{
max
i∈C

{ti}
}
= T ′

S ≥ TS = min
C∈C

{
max
i∈C

{ti}
}
.

But, În → η ̸= µ, and can only control variance

E[(Î ′n − µ)2] =
σ2

n
+ (η − µ)2

= var+ bias2

.

5. Level selection in reliability problems

.

Can use coarse estimate idea in (2) with MLMC?

Sequence of estimators T0, . . . , TL based on a
nested sequence of minimal cutsets,

C0 ⊂ · · · ⊂ CL = C.
Note TL ≡ TS , which is not typically true in a
general MLMC setting.

Need
1. geometric increase in cost;
2. geometric decrease in variance;
3. geometric decay in differences;
4. ℓ = 0 should be cheap.

Cost: aim for doubling of min cutset collections
(costℓ = |Cℓ|), e.g.
|C0| = 8, . . . , |C5| = 250, |C6| = 500, |C7| = 1000

Prespecify these target sizes and select cutsets.

Level 0: Presimulate 100 component failures,
take expectation and sort cutsets. Choose the
|C0| smallest.

Other levels: Continued selection based on
sorted expectation works poorly.
We really want

E[Tℓ − Tℓ−1] > E[Tℓ+1 − Tℓ]

i.e. given C0, . . . , Cℓ−1 want level ℓ st E[Tℓ−1−Tℓ]
is maximal. Note,
E[Tℓ−1 − Tℓ] ≤ E

[
Tℓ−1 −min

{
Tℓ−1, max

C∈C\Cℓ−1

C(T )

}]
where C(T ) is cutset failure time.
∴ use the 100 presimulations toMonte Carlo es-
timate:
E [Tℓ−1 −min {Tℓ−1, Ci(T )}] ∀ i st Ci ∈ C\Cℓ−1

and sort using this measure. Select smallest
|Cℓ| − |Cℓ−1|.

.

Funding

.

Louis Aslett is supported by EPSRC programme grant EP/K014463/1 (www.i-like.org.uk)
Tigran Nagapetyan and Sebastian Vollmer are supported by EPSRC grant EP/N000188/1

.

6. Results

.

Left pairs: Diagnostic tests for largest system; Right: cost gains for nested randomly grown systems.
Components Weibull with shape β = 0.5 (left), β = 3 (right) and uniformly distributed scale.

-5

0

5

5 10

lo
g 2
(M

ea
n)

-5

0

5

10

5 10
Level

lo
g 2
(V

ar
ia

nc
e)

20

25

30

35

40

20 40 60
Num Components

lo
g 2
(C

os
t)

Method
MLMC

MC

ε
2−4

2−7

-15

-10

-5

0

5 10

lo
g 2
(M

ea
n)

-15

-10

-5

0

5 10
Level

lo
g 2
(V

ar
ia

nc
e)

15

20

25

30

20 40 60
Num Components

lo
g 2
(C

os
t)

ε
2−4

2−7

Method
MLMC

MC


