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1. CHMMs
Coupled Hidden Markov Models (CHMMs)
are a natural extension of HMMs when there
are multiple observation sequences with de-
pendencies:
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Notation:
x

(i)
t , y

(i)
t : hidden state/obs at time t in chain i.
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3. Existing approaches
Saul and Jordan (1999) Mixture Model
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ωki P(X(i)
t |x

(k)
t−1)

ωki can be viewed as mixing weights, or
strength of effect of chain k on chain i. Now
only NC2 parameters.

Zhong and Ghosh (2002) Marginal Composite
Likelihood
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with α
(k)
T (i) itself a factored approximation of

the forward variable. Only C = 2 example.

Sherlock et al. (2013) Structured Transitions
Uses structured transition matrix for each
chain, where probabilities modelled with a lo-
gistic regression with others chains (and exter-
nal factors) as covariates.

Choi et al. (2013) Logistic Regression
Similarly, a transition matrix per chain, with lo-
gistic regression transition probabilities.
But, for speed, ad-hoc inferential procedure:
mixture model EM to infer observation model,
Viterbi to select most likely hidden sequence,
IRLS on subsample to fit LR with lasso+AIC.

C = 39, N = 2, T = 15.4× 106

4. Our hidden layer model
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0 ∼M(N−1, . . . , N−1)

Funding
This work is funded under the

EPSRC i-like project.

www.i-like.org.uk

2. The naïve approach
One might naïvely reformulate as:
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Zt = (X(1)
t , . . . , X

(3)
t ) and Y (i)

t |Zt = Y
(i)

t |X(i)
t

=⇒ for C chains with X
(i)
t ∈ {1, . . . , N},

|Zt| = NC .

Natural forward variable becomes:

Objective is inference in the minimal setting of
N = 10, C = 100, T = 105. This leads to numer-
ous challenges:

• computing forward variable =⇒ TNC

additions and TC multiplications;
≥ 10105 elementary operations

• forward variable requires 8TNC bytes of
memory to store;
≥ 7.45× 1096 GB memory

• transition matrix is NC ×NC .
≥ 9.31× 10190 GB memory

Hence, naïve approach clearly a non-starter.
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5. Our main interest and scaling towards C = 100 — initial work
There is some interest in inference on model
parameters, but our primary interest is actually
in inferring dependence structure. e.g. in ge-
nomics data set this could infer ancestry.
∴ direct multinomial logistic regression transi-
tion model: a blocked spike-and-slab prior for
Bayesian variable selection is then equivalent to
inferring the hidden layer structure.

MCMC sampler

• Hidden states: conditional forward/
stochastic-backward
X(i)

1:T |β,λ,Y
(i)
1:T ,X

(−i)
1:T for i ∈ {1, . . . , C}

• Multinomial logistic parameters
β |X(1:C)

1:T
• Observation model parameters
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Hidden states
Define conditional forward variable

α
(l)
tjk = P(y(l)

t , X
(l)
t−1 = j,X

(l)
t = k |y(l)

1:t−1,x
(−l)
1:T )

=
(

N∑
i=1

α
(l)
(t−1)ij

)
exp(x̃∗j

t−1β
(l)
k )

1 +
∑N−1

n=1 exp(x̃∗j

t−1β
(l)
n )

× f
Y

(i)
t |X(i)

t

(
y

(i)
t | k

)

Then sample X(i)
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Logistic regression
Currently using Holmes and Held (2006).

Results
Chains Observations States
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6. Current work
Probit regression
Adapting Pakman and Paninski (2013), a
Hamiltonian Monte Carlo sampler for truncated
multivariate Gaussian and binary distributions.
Achieved substantial speedup vs author’s ref-
erence C++ implementation by exploiting prob-
lem specific features.

Currently exploring GPU implementation:

boundary hit times embarassingly parallel;
minimum hit time a reduction operator; entire
problem can propagate on GPU.
Hidden states
Also, exploring block sampling hidden states.
Need to find an algorithm to partition chains in
some sense ‘optimally’: mixing -vs- compute.
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