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1. CHMMs

Coupled Hidden Markov Models (CHMMs)
are a natural extension of HMMs when there
are multiple observation sequences with de-
pendencies:

Notation:
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x; 'y, : hidden state/obs at time ¢ in chain s.

3. Existing approaches
Saul and Jordan (1999) Mixture Model

Zw P(X (Z)‘x(k))

wk; can be viewed as mixing weights, or
strength of effect of chain k£ on chain i. Now
only NC? parameters.

Zhong and Ghosh (2002) Marginal Composite
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with 04( )( ) itself a factored approximation of
the forward variable. Only C = 2 example.

Sherlock et al. (2013) Structured Transitions
Uses structured transition matrix for each
chain, where probabilities modelled with a lo-
gistic regression with others chains (and exter-
nal factors) as covariates.

Choi et al. (2013) Logistic Regression
Similarly, a transition matrix per chain, with lo-
gistic regression transition probabilities.
But, for speed, ad-hoc inferential procedure:
mixture model EM to infer observation model,
Viterbi to select most likely hidden sequence,
IRLS on subsample to fit LR with lasso+AIC.
C=39,N=2T=154x10°

4. Our hidden layer model

2. The naive approach

One might naively reformulate as:

Z = (XM, xP)and v | Z, = v | X

—> for C chains with Xt(i) c {1,...,N},
Z,| = N©.

Natural forward variable becomes:
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Objective is inference in the minimal setting of
N =10,C = 100, T = 10°. This leads to numer-
ous challenges:

e computing forward variable — TN¢
additions and 7'C multiplications;
> 1019° elementary operations

e forward variable requires ST N bytes of
memory to store;
> 7.45 x 10°° GB memory

e transition matrix is N¢ x N¢.
> 9.31 x 10" GB memory

Hence, naive approach clearly a non-starter.
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5. Our main interest and scaling towards C' = 100 — initial work
Then sample X@_F 3, )\,ng, Xg_%’) back-

There is some interest in inference on model
parameters, but our primary interest is actually
in inferring dependence structure. e.g. in ge-
nomics data set this could infer ancestry.

. direct multinomial logistic regression transi-
tion model: a blocked spike-and-slab prior for
Bayesian variable selection is then equivalent to
inferring the hidden layer structure.

MCMC sampler

e Hidden states: conditional forward/
stochastic-backward

X\ | B A Y, X for i€ {1,...,C}
e Multinomial logistic parameters

B | X(l :C)
o Observatlon model parameters
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Hidden states
Define conditional forward variable
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6. Current work

Probit regression

Adapting Pakman and Paninski (2013), a
Hamiltonian Monte Carlo sampler for truncated
multivariate Gaussian and binary distributions.
Achieved substantial speedup vs author’s ref-
erence C++ implementation by exploiting prob-
lem specific features.

wards, since:
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Logistic regression
Currently using Holmes and Held (2006).
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Chains

boundary hit times embarassingly parallel;
minimum hit time a reduction operator; entire
problem can propagate on GPU.

Hidden states

Also, exploring block sampling hidden states.
Need to find an algorithm to partition chains in
some sense ‘optimally”: mixing -vs- compute.
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