
Considerations in Parallel
Algorithm Design

Louis J. M. Aslett
i-like Reading Group
10th February 2014

Goal of this talk
Provide a little insight into what considerations there

are in parallelising algorithms beyond the trivial

‘100% independent tasks’ scenario.

Actual code & specific technology details will be

ignored today but happy to discuss!

!2

Overview

I. Computer architecture background

II. Parallel programming background

III. Parallel programming design with toy statistical
examples

IV. Final comments

!3

Computer architecture
background

I.

Background Reading

• ‘The free lunch is over: A fundamental turn toward
concurrency in software’ 
http://www.gotw.ca/publications/concurrency-
ddj.htm

• ‘Welcome to the jungle’  
http://herbsutter.com/welcome-to-the-jungle/

!5

http://www.gotw.ca/publications/concurrency-ddj.htm
http://herbsutter.com/welcome-to-the-jungle/

!6
‘The free lunch is over’ — Herb Sutter

!7

CPU

Motherboard
Chipset

Hard
Drive

GPU

6G
B

G
D

D
R

32
G

B
D

D
R3L1

L2

L1
L2

L1
L2

L1
L2

L3

Network

Simplified computer architecture

!8

Memory Access Size Latency

Registers
(per core)

168 physical
16 named (x86-64) 0 clocks

L1 Cache
(per core) 0.03MB ~ 4 clocks

L2 Cache
(per core) 0.25MB ~ 12 clocks

L3 Cache
(shared) 2 - 8 MB ~ 36 clocks

Main memory up to 32,768MB ~ 212 clocks

Hard drive Terabytes
can be

> clocks

Approximations based on Intel Haswell

Cache line: 64 bytes

106

Parallel programming
background

II.

Parallel speedup

!10

Sp =
Ts

Tp

Superlinear speedup not impossible
in embarrassingly parallel setting
due to memory access.

Sublinear speedup most common.

Linear should be the goal.

Sp

p

See Amdahl’s Law and Gustafson’s Law.

Types of parallelism

!11

Single Instruction Multiple Instruction

Single Data SISD MISD

Multiple Data SIMD MIMD

SISD: no parallelism

MISD: not a common setting

SIMD: classic GPU setting

MIMD: classic CPU setting

Some common tools

A. GPUs

B. CPUs

C. Clusters

!12

A. GPUs in a nutshell
Extraordinarily parallel devices (upto 2688 cores at
present).

Single instruction multiple data (threads) is the only
mode of operation.

Note that GPUs cannot access the system memory:
any data must be copied to, and any results from, the
GPU. This can be costly for large data sets.

!13

A mental model for GPUs
• Kernel: a C function which is flagged to be run on a GPU.

• A kernel is executed on the core of a multiprocessor inside a
thread. A thread can be thought of as just an index

• At any given time, a block of threads is executed on a
multiprocessor. A block can be thought of as just an index 
 . Very loosely: an index of multiprocessors in devices.

• Together corresponds to exactly one kernel running on
a core of a single multiprocessor.

Very simplistically speaking, think of how to parallelise your
problem by how to split it into identical chunks indexed by a
pair

!14

j � N

i � N

(i, j)

(i, j) � N � N

!15

Block 0 Block 1 Block 2 Block 3

CUDA Program

2 Multiprocessor GPU

Block 0

Multiprocessor 1

Block 2

Block 1

Block 3

Multiprocessor 2Threads

Core 1 Core 2 Core 3 Core 4

Multiprocessor 1 (4 core)

a=x[0*50+0]

a=x[1*50+2]

3 golden GPU concepts
i) Memory accesses are slow compared to the cores.
Always have many more total threads than cores to
mask this.

ii) Conditional sections of an algorithm can quickly
kill performance.

iii) Random or disorganised memory accesses will
make a GPU under perform a CPU!

!16

GPU i) Slow memory access

!17

= Global memory access
=> Execution stall!

Global memory accesses take
400-600 cycles, so a core will stall
when a request is made.

But, if # threads > # cores then
CUDA will interleave another
thread and run until the memory
request is fulfilled and the first
thread can run again.

Also, consider carefully store -vs-
recompute. Might be quicker to
recompute simple values than incur
memory accesses!

Thread A Thread B Thread C

GPU ii) Conditional execution

The exact same code is run on multiple items of data,
so conditional statements can kill performance.
The total run time is the sum of all branch run times.

!18

Cores1 2 3 4 5 6 7 8

if(x[core]>0) {

...

...

} else {

...

}

T T F T F F T F

Unless you know in advance the conditional result.

GPU iii) Coalesced memory access

When a floating point number is requested from
memory, that number and the following 3 are loaded
(128-bit memory bus).

Thus, if consecutive threads require consecutive
regions of memory, there are a quarter the number of
memory transactions required.

If an algorithm requires random or disorganised
memory access then this can reduce performance at
least 4 fold compared to the intended GPU
programming model.

!19

B. CPU parallelism
CPUs are not nearly as parallel as GPUs, but have
certain advantages, including not being limited to
single instruction multiple data algorithms.

Often there is ‘free’ parallelism you never even see
happening.

The tools are very easy. If you know C already,
OpenMP can be learned in a day.

CPUs cores much more powerful than GPU cores.
!20

CPU: Low level ‘freebies’

Some things come ‘for free’ on the CPU:

• It will (usually) execute serial code where there is
no dependency out-of-order automatically.

• Good compilers will often identify places where
CPU vector arithmetic can be used (MMX/SSE/
AVX).

• For smaller data problems, you can forget about
memory accesses due to automatic caching.

• Integer arithmetic is fast compared to GPU.
!21

CPU: How parallel to go?

Unlike the GPU, because of caching you will most
often want to match the level of parallelism to the
number of physical cores (but profile to be sure!)

Context switching is moving from one thread of
execution to another and is expensive on a CPU (v
fast on GPU). It can also destroy caching efficiency.

Care required not to overload the CPU with threads.

!22

CPU: Biggest factor

The biggest factor in parallel performance using a tool
such as OpenMP is shared memory access.

If more than one thread of execution needs to access
the same memory location to update a result, then
there is expensive coordination of cores involved.

Because CPUs tend to have less parallelism can try to
design around this.

!23

CPU: Random number generation

As of Ivy Bridge, Intel CPUs include ‘true’ hardware
random number generation. If the algorithm involves
heavy generation of random numbers this could
outperform a pseudo random number generator.

Upto 500MB of random data per second (vs 3.5MB
per second using GSL).

!24

C. Cluster parallelism
The step up in complexity for parallelism over a
cluster is potentially significant.

No longer a shared memory system: no unified view of
the data set visible to everyone unless it is copied to
every machine. Changes in one machine not
automatically visible to others.

Network communication is the slowest possible link!

!25

Clusters: The complexity of memory

• Might be the only choice if data set too large for
one computer.

• Adds significant complexity.
!26

Memory

Pr Pr Pr Pr

CPU/GPU model

‘shared memory’

Memory

Pr Pr

Memory

Pr Pr

Memory

Pr Pr

Network

Cluster model

‘distributed memory’

Single common enemy

• Access of shared memory.

• Strategies are slightly different to deal with this on
CPU, GPU and cluster.

• Doing additional (modest) computational work may
be preferable to sharing memory if the choice exists.

!27

Parallel programming design
with toy statistical examples

III.

Common strategy
A. Partition

B. Communication

C. Agglomeration

D. Mapping

See ‘Designing and Building Parallel Programs’ by Ian
Foster. Old but still relevant.

!29

A. Partition
• Divide into small pieces both the computation

related with the algorithm and the data on which
the computation takes place.

• Domain decomposition: decompose data first,
then computation.

• Functional decomposition: decompose
computation first, then data.

• Just this step required => ‘100% independent tasks’
!30

Partition: Objectives

• At least an order of magnitude more parts of the
partition than available cores.

• Minimise redundant computation/storage.

• Roughly equal sized parts.

• Partition scales up as problem size increases.

!31

Partition: Toy example 1 — KDE

!

 
Domain decomposition: 
Compute K on full grid for each data point in parallel.  
Good when data size large, grid coarse.

Functional decomposition: 
Compute estimate for all data points
parallelising over the grid.  
Good when data size small, grid fine.

!32

f̂h(x) =
1

nh

n�

i=1

K

�
x � xi

h

�

f̂h(·)

Partition: Toy example 2 — Parallel Tempering

For a collection of RWMH chains with uniform swap
proposals, the natural decomposition is functional:
each RWMH should be performed in parallel.

!33

p(x1) =
m�

i=1

p�i(x
(i)
1) where p�(x) = �(x)�

x(1)
1

�(x)

�(x)�2 x(2)
1

�(x)�3 x(3)
1

x(1)
2

x(2)
2

x(3)
2

x(1)
2

x(3)
2

x(2)
2

x(1)
3

x(2)
3

x(3)
3

x(2)
3

x(1)
3

x(3)
3

x(1)
4

x(2)
4

x(3)
4

Partition: Toy example 3 — Gibbs IGMRF

Model for each pixel of an image defined intrinsically,
dependent only on four nearest neighbours (mean is
sample mean of the four neighbouring pixels)

!

Gibbs sampling this non-stationary, unconditioned
GMRF is then straight-forward.

Clear functional parallelism sampling a full sweep over
the image.

!34

xi | x�i � N

�

�
�

j�N (i)

xj/|N (i)|, I

�

�

B. Communication
• Partitions are planned to execute in parallel but

cannot, in general, execute completely
independently.

• Computation in one task requires data associated
with another task => communication between
tasks.

!35

Communication: The challenge

• No communication => ‘embarrassingly parallel’

• Communication means that issues around memory
efficiency (CPU/GPU) and communication (cluster)
come to the forefront.

• In highly non-local or asynchronous settings,
communication can end up dominating
computation.

!36

Communication: Types

• Local -vs- global 
Local task just needs data from ‘neighbours’. Nice for
a GPU and cluster. 
Global will have high communication with ‘distant’
data. Might be ok for CPU if cached.

• Structured -vs- unstructured 
Determines ability to target a particular method.

• Synchronous -vs asynchronous 
Asynchronous means point of communication
unknown and one task must request data from
another. (Uncommon in stats?)

!37

Communication: Objectives

• Roughly equal communication for all tasks.

• Small amounts of interaction with neighbours.

• Computation able to proceed concurrently (else
waiting on previous results).

• Communication able to proceed concurrently
(synchronised).

!38

Communication: Toy example 1, KDE
With the KDE domain decomposition, there is a
potential communication issue for large grid problems.

If grid too large to store n copies to later sum, then
memory storing result for the grid must be updated by
every task.

i.e. There will be n tasks wanting to add their
contribution to the memory locations holding the grid
values.

=> if data can be held on single machine, might prefer
functional decomposition here.

!39

Communication: Toy example 2 — Parallel Tempering

Zero communication in the RWMH sections.

Local but random memory accesses in the swap
section. If more than one swap this section is
potentially highly serial.

Redesignable to enable continued parallel execution?
!40

x(1)
1

�(x)

�(x)�2 x(2)
1

�(x)�3 x(3)
1

x(1)
2

x(2)
2

x(3)
2

x(1)
2

x(3)
2

x(2)
2

x(1)
3

x(2)
3

x(3)
3

x(2)
3

x(1)
3

x(3)
3

x(1)
4

x(2)
4

x(3)
4

Communication: Toy example 3 — Gibbs IGMRF

Memory accesses requires real care when computing
on GPU or cluster.

GPU: Boundary conditions hinder SIMD. Hard to
coalesce memory accesses. Still faster than CPU.

Cluster: if different blocks of pixels on different
machines then asynchronous pixel requests involved.

!

!41

x(i�1)j

xi(j�1)

xij

xi(j+1)

x(i+1)j

C. Agglomeration
• Now start to think about the target technology

(CPU/GPU/cluster).

• Combine tasks into a single thread to get the right
balance of concurrency and communication.

• i.e. broadly speaking: CPU will want heavy
agglomeration, GPU will want light agglomeration
(as long as communication under control).

!42

Agglomeration step: Objectives

• To reduce communication.

• To identify places where duplication of computation
may be preferable to communication or storage.

• To identify data which can perhaps be replicated at
small cost to reduce communication.

• This can be highly problem specific: auto-tuning
strongly recommended where possible!

!43

Agglomeration: Toy examples

Implicitly agglomerated already for speed of
presentation!

Each of the examples would have been fully
partitioned, whereas we only did first level domain/
functional partition as it was appropriate here.

e.g. Could further parallelise KDE sum for massive
scalability on very large clusters and huge data.

!44

D. Mapping
• How do the agglomerated tasks map to the

technology.

• Not relevant to CPU.

• GPU => block/thread division

• Cluster => Careful distribution because no shared
memory.

!45

Final comments
& odds and ends

II.

Parallel libraries

Often problems can be expressed in a way that allows use
of already optimised general purpose parallel libraries

• cuBLAS + Magma

• scaLAPACK

• Thrust

• MapReduce/Hadoop

• Storm

e.g. Silverman (1982): KDE using FFT
!47

Mining computer science parallel algorithms
CS has a head start researching this for decades (the
Cray-1 in 1976 was a vector machine!) Some
algorithms will map to existing solutions.

For example,

Definition: An operator, , is a reduction operator if
it is commutative and associative.

 
If your algorithm is a reduction operator then there
are established parallel techniques. Moreover, different
techniques optimised for GPU/cluster/…

!48

�

x � y = y � x , x � (y � z) = (x � y) � z

Reduction example (Mike Giles)

!49

Local reduction

Pictorial representation of the algorithm:
✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈

✈ ✈ ✈ ✈ ✈ ✈ ✈ ✈

✈ ✈ ✈ ✈

✈ ✈

✈

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘✘

✟✟✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✟✟

✟✟✟✟✟✟✟✟✟

#
#
#

##

#
#
#
##

✁
✁
✁
✁✁

second half added pairwise to first half
by leading set of threads

Lecture 4 – p. 9

‘Pseudo-parallel’: Pipelining

For sequential/streaming problems. Say 1 data point
takes t seconds to compute.

If you can decompose the sequential algorithm then
you can pipeline so that total execution time for n
data items is less than nt.

!50

