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1. The Problem
Phase-type (PHT) distributions are a natural
choice for modelling the multiple phases of fail-
ure and repair which a redundant subsystem
may go through before ultimately becoming
unavailable.

Bladt et al. (2003) present a scheme for Bayesian
inference on general PHT distributions. There
are some key areas where there is scope to ex-
tend this work in a reliability context:

i) the need to account for censoring and
other common situations in reliability;

ii) the need for parameter constraints;

iii) the sampling scheme is intractably slow
for the PHT distributions commonly en-
countered in reliability.
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2. PHT Distributions
Consider a Continuous-Time Markov Chain
(CTMC) with an absorbing state. Without loss
of generality, let the CTMC generator be writ-
ten:

T =

(
S s
0T 0

)
Then, ifX is the random variable denoting time
to entering the absorbing state,X ∼ PHT(π,T)
and

FX(x) = 1− πT exp{xS}e, e = (1, . . . , 1)T

fX(x) = πT exp{xS}s

Simplest Example: Consider a dual redundant
hot-swappable power supply (PS) subsystem.

PS 1 down
PS 2 up

PS 1 up
PS 2 down

PS 1 down
PS 2 down

PS 1 up
PS 2 up

λf λf

λf λf

λr λr

λu

λr : Repair rate; λf : Failure Rate; λu : Uncov-
ered Failure Rate (ignore for simple case).

=⇒ T =


−2λf λf λf 0
λr −λr − λf 0 λf

λr 0 −λr − λf λf

0 0 0 0
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3. Bladt et al. (2003) Algorithm
Full stochastic process to absorption observed
=⇒ ∃ conjugate priors π ∼ Dir;Sij , si ∼ Gam

Bladt et al. (2003) proposed a Metropolis-
Hastings (MH) within Gibbs sampler for the
unobserved process case.

• MH proposal is draw from:

p(path · |π,S, Y ≥ yi)

by rejection sampling.

Acceptance ratio =⇒ last sample from

p(path · |π,S, Y = yi)

after truncating to yi.
• sample from unobserved process in MH

step gives conjugacy for Gibbs step.

p(π,S | paths ·,y)

p(paths · | π,S,y)

4. Censoring/Constraints
Censoring: arises through competing risks:

time
system failure

yi

?

Subsys 1
Subsys 2

Elegantly dealt with by performing just rejec-
tion sampling part of MH step.

Parameter Constraints: We have shown that,
with possible prior parameter restrictions,
Gibbs step conjugacy can be maintained when
imposing constraints such as:

C1 : S12 = S13 = s2 = s3 = λf

C2 : S23 = 0

This is desirable for applications and also re-
duces the dimension of the parameter space.

5. Computational Tractability
The most significant advance is computational.
Consider the simple example presented in box 2
(with λr ≈ 30−1 and λf ≈ 100000−1, say).

a) Even small moves on the Gibbs step can re-
sult in samples of π and S such that observa-
tions yi are so extreme in the right PHT tail
as to stall the rejection sampling;

b) Furthermore, with T14 = 0 there are sig-
nificant issues with ‘invalid’ MH proposals:
when truncating to time yi, if the CTMC is in
state 1 an invalid absorbing move 1 → 4 is
inserted.

1
2
3
4

yi simulationinvalid
truncation

We propose two advances to remedy this.

a) Direct Conditional Sampling: Rather
than rejection sampling, which is suscepti-
ble to stalling, it is more desirable to sample
p(path · |π,S, Y ≥ yi) directly. This requires the
ability to sample from the conditional sojourn
time density:

p(δ = ∆ |π,S, j(t), t, Yi ≥ yi)
where t is the current time and j(t) the current
state in the CTMC path being sampled.

We have shown this can be calculated as:

This is nearly log-linear, though not log-
concave. Adaptive Rejection Metropolis Sam-
pling (ARMS) has proven highly efficient.

b) Reverse Simulation: For highly reliable sys-
tems, the starting state (full operation) is the
most common. Thus, by sampling in reverse
from yi and truncating at 0 the commonality of
state 1 becomes a major advantage and ‘invalid’
proposals are rare.

This requires detailed balance to be satisfied.
Also, absorbing CTMCs don’t necessarily reach
stationarity, so selection of starting state must be
made from the quasi-stationary distribution.
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Bladt et al. 95% CI
Aslett & Wilson average
Aslett & Wilson 95% CI

=

(
n∑

k=1

p(j(t+ ∆) = k | j(t),T, t)p(Yi ≥ yi − t−∆ |T)

)
p(δ = ∆ | j(t),T, t)

p(Yi ≥ yi | j(t),T, t)
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