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Hidden Markov Models (HMM)

The standard HMM is well known and extensively studied:

x2 x3x1

y1 y2 y3

Here, take finite discrete hidden state space and arbitrary
observation state space.

Yt |Xt ∼ FY(·;Xt) Yt ∈ Ω

Xt | (Xt−1 = i) ∼ Discrete(ai1, . . . , aiN) Xt ∈ {1, . . . ,N}
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Hidden Markov Models (HMM)

Traditionally forward and backward algorithms play a central
role in inference for HMMs.

αt(i) = P(Y1 = y1, . . . ,Yt = yt,Xt = i)

=

 N∑
j=1

αt−1(j) aji

 fY(yt;Xt = i)

βt(i) = P(Yt+1 = yt+1, . . . ,YT = yT |Xt = i)

=
N∑

j=1

aij fY(yt+1;Xt+1 = j) βt+1(j)

P(Xt = i |y) = αt(i)βt(i)∑
j αt(j)βt(j)
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Coupled Hidden Markov Models (CHMM)
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Coupled Hidden Markov Models (CHMM)

Can naïvely reformulate as:

z1 z2 z3

y(1)1 y(1)2 y(1)3

y(2)2 y(2)3

y(3)1 y(3)2 y(3)3

y(2)1

Where Zt = (X(1)
t , . . . ,X(3)

t ) and Y(i)
t |Zt = Y(i)

t |X(i)
t

=⇒ for C chains with X(i)
t ∈ {1, . . . ,N}, |Zt| = NC.

http://www.tcd.ie/
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Coupled Hidden Markov Models (CHMM)

So, given C chains with N hidden states, the natural forward
variable becomes:

αt(i1, . . . , iC) = P(Y(1:C)
1:t = y(1:C)

1:t ,X(1)
t = i1, . . . ,X(C)

t = iC)

=

 N∑
j1=1

· · ·
N∑

jC=1

αt−1(j1, . . . , jC)
C∏

k=1

P(X(k)
t = ik | x(1:C)

t−1 = j1:C)


×

C∏
k=1

fY(y(k)t ;X(k)
t = ik)

with a corresponding backward variable, so that:

P(X(1)
t = i1, . . . ,X(C)

t = iC |y) = αt(i1, . . . , iC)βt(i1, . . . , iC)∑
j1 · · ·

∑
jC αt(j1, . . . , jC)βt(j1, . . . , jC)

http://www.tcd.ie/
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CHMM: the computational challenge

The initial objective is to be able to perform inference in
absolutely minimal setting of N = 10,C = 100,T = 105.

However, under the naïve formulation, there are numerous
issues:

• computation of the forward variable involves NC additions
and C multiplications at each of T time steps;

≥ 10105 computations

• even assuming computation were possible, each forward
variable requires 8NC bytes of memory to store, and all T
of them must be stored;

≥ 7.45× 1096 GB memory

• the transition matrix itself is of dimension NC × NC.

≥ 9.31× 10190 GB memory

http://www.tcd.ie/
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Transitions: mixture model

A popular approach is to use the mixture model formulation of
Saul and Jordan (1999). This replaces the NC × NC transition
matrix with the transition model:

P(X(i)
t | x(1:C)

t−1 ) =

C∑
k=1

ωki P(X(i)
t | x(k)t−1)

ωki can be viewed as mixing weights, or strength of effect of
chain k on chain i.

This now involves only NC2 parameters, but does not solve the
computational issue.

http://www.tcd.ie/
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Computation: marginal composite likelihood

Zhong and Ghosh (2002) made additional simplifications. After
calculating forward variables for each chain, k,

α
(k)
t (i) = P(Y(k)

1:t = y(k)1:t ,X
(k)
t = i)

they use a marginal composite likelihood

P(Y(1:C)
1:T ) ≈

C∏
k=1

P(Y(k)
1:T) =

C∏
k=1

N∑
i=1

α
(k)
T (i)

as part of an iterative self-mapping transformation algorithm
(Baum et al., 1970).

In practise, they only had C = 2 — scalable? In fact, same
forward variable computation issue, but less memory required
(only need α

(·)
T (·))

http://www.tcd.ie/
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Transitions: structured matrix & logistic regression

Sherlock et al. (2013) replaced the full transition matrix with a
structured transition matrix for each chain where probabilities
were modelled with a logistic regression including others chains
(and external factors) as covariates.

The computational approach was an adaptive random walk
Metropolis-within-Gibbs algorithm.

The implementation was in C and had a run-time of 3 hours for
100000 iterations (9.3 it/sec) with C = 6, 2 ≤ N ≤ 4 and
T ≈ 20(?) with 1841 such sequences.

http://www.tcd.ie/
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Transitions: logistic regression

Choi et al. (2013) used logistic regression directly for the
transition probabilities in a CHMM with N = 2.

• 2C logistic regressions: each chain at t − 1 acts as a
categorical explanatory variable in predicting the state of a
chain at t;

• lasso shrinkage with AIC selection of penalty weights;
• emission distribution parameters fitted as a mixture model

via EM and left fixed;
• IRLS to fit regression parameters on a subsample of 50000

transitions;
• forward-backward to deterministically select hidden state

sequence one chain at a time.

C = 39, N = 2, T = 15.4× 106

http://www.tcd.ie/
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Summary of existing approaches

• Mixture model reduces number of parameters;
• Marginal composite likelihood also avoids need to store all

the forward variables;
• Structured transition matrices per chain improves

computation, but modelling becomes cumbersome as
number of chains grows and assumes some scientific
knowledge of the hidden process to achieve sparsity;

• Direct logistic regression transitions promise all these
advantages, but has not been implemented in a principled
statistical fashion.

However, none of these offer a solution to huge computational
challenge of joint forward variable calculation as number of
chains grows.

http://www.tcd.ie/
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The question of interest

In the context of our genomics application, the primary
question of interest is to infer the graphical structure which it is
expected will be sparse.
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The question of interest

In the context of our genomics application, the primary
question of interest is to infer the graphical structure which it is
expected will be sparse.

• use multinomial logistic/probit regression for transition
probabilities =⇒ C(N − 1) + 1 parameters instead of NC;

• use blocked spike-and-slab prior construction to perform
Bayesian variable selection as a means of inferring hidden
layer structure;

• employ MCMC to properly quantify uncertainties.

http://www.tcd.ie/
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The model

Observation model
Y(i)

t |X(i)
t ∼ Poisson

(
θX(i)

t

)
where θ1 < · · · < θN

θi =
i∑

j=1

λi

λi ∼ Gamma(α, β)
Hidden state model

X(i)
t |X(1:C)

t−1 ∼ M
(

p(i)t1 , . . . , p
(i)
tN

)
for t ∈ {2, . . . ,T}

p(i)tj =
exp(x(1:C)

t−1 β
(i)
j )∑N−1

n=1 exp(x(1:C)
t−1 β

(i)
n )

β
(i)
jk ∼ N(0, v2)

X(i)
0 ∼ M(N−1, . . . ,N−1)
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Top block Gibbs sampler

MCMC sampler from the block updates:
• Hidden states: conditional forward/stochastic-backward

X(i)
1:T |β,λ,Y(i)

1:T,X
(−i)
1:T for i ∈ {1, . . . ,C}

• Multinomial logistic parameters (Holmes and Held, 2006)

β |X(1:C)
1:T

• Observation model parameters

λ |Y(1:C)
1:T ,X(1:C)

1:T

http://www.tcd.ie/
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Conditional forward/stochastic-backward
Use the modified conditional forward variable

α
(l)
tjk = P(y(l)t ,X

(l)
t−1 = j,X(l)

t = k |y(l)
1:t−1,x

(−l)
1:T )

=

( N∑
i=1

α
(l)
(t−1)ij

)
exp(x∗j

t−1β
(l)
k )

1 +
∑N−1

n=1 exp(x∗j
t−1β

(l)
n )

(∑k
n=1 λn

)y(l)
t

y(l)t !
e−

∑k
n=1 λn

Then, the simple factorisation:

P(X(l)
1:T |y(l)

1:T,x
(−l)
1:T ) = P(X(l)

T |y(l)
1:T,x

(−l)
1:T )

T−1∏
t=1

P(X(l)
n−t |X

(l)
n−t+1:T,y

(l)
1:T,x

(−l)
1:T )

=⇒ sampling is straightforward since:

P(X(l)
T = j |y(l)

1:T,x
(−l)
1:T ) =

N∑
i=1

α
(l)
Tij

P(X(l)
n−t = i |X(l)

n−t+1 = j,y(l)
1:T,x

(−l)
1:T ) ∝ α

(l)
(n−t+1)ij
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Holmes and Held (2006)

Uses an auxilliary variable method to ensure conditional
conjugacy for logistic models and so automatic sampling
without tuning parameters.

The variance component in the Normal latent model
formulation of logistic regression has an additional
Kolmogorov-Smirnov prior.

In this setting, each chain acts as a categorical predictor
variable, contributing (N − 1) parameters to the model.
Consequently, the design matrix is (T − 1)× (1 + C(N − 1)).

http://www.tcd.ie/
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Observation model

The setup of the observation model essentially follows technique
in Scott (2002) to avoid ‘label switching’:
The Poisson parameters θ1 < · · · < θN are based on cumulative
sums of λi = θi − θi−1, so that when a chain is in state i there
are additive Poisson contributions with rate λ1, . . . , λi.

Thus, if x(l)t = i then observation y(l)t is decomposed as the N
vector

(
y(l)t1 , . . . , y

(l)
ti , 0, . . . , 0

)
with

∑i
j=1 y(l)tj = y(l)t and

Y(l)
tj ∼ Poisson(λj). (i.e. ‘regimes’ ≤ i are active)

Given y(l)t , the y(l)t· are simply a multinomial draw with total y(l)t
and probability vector proportional to (λ1, . . . , λi).

With all y(l)t· , the posterior of each λi follows easily as a simple
conjugate posterior.

http://www.tcd.ie/
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Implementation

Current implementation is ≈ 90% in C++, using Armadillo
linear algebra libraries.

Current breakdown of CPU usage in a typical small C, N and T
run:

85.2% sampling β |X(1:C)
1:T

of which:
60.8% sampling mixing weights;
18.8% matrix operations.
20.4% exp(·), random number generation, …

6.2% sampling X(i)
1:T |β,λ,Y(i)

1:T,X
(−i)
1:T for i ∈ {1, . . . ,C}

8.6% overhead (easy to remove in due course).

http://www.tcd.ie/
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Growth in C, T and N (time)

Chains Observations States
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Growth in C, T and N (proportion)
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‘Free’ parallelism in β |X(1:C)
1:T
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Alternative dynamic programming

Are there better approaches to the dynamic programming when
dealing with joint forward variables?

Do we really need the forward variable or are there other
dynamic programming methods of getting at the likelihood in
this model?

e.g.
P(y |θ) =

N∑
i=1

α
(C)
T (i) where α(k)

t (i) = P(y(1:k)
1:t , x(k)t = j)

P(y |θ) =
C∏

k=1

N∑
i=1

α
(k)
T (i) where α(k)

t (i) = P(y(k)
1:t , x

(k)
t = j |y(1:k−1)

1:t )

P(y |θ) =
T∏

t=1

ψ(t) where ψ(t) = P(y(1:C)
t |y(1:C)

1:t−1)

etc etc …

http://www.tcd.ie/
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Blocked conditional forward/stochastic backward

Sampling using the conditional forward/stochastic backward
should of course be blocked.

• Need to find a partition of chains Ji which is in some sense
‘optimal’:

• coarser =⇒ better mixing, higher memory, higher compute
• finer =⇒ poorer mixing, lower memory, lower compute

• Partition may vary one iteration to the next depending on
graphical structure chaging, so decision algorithm must be
efficient too.

• Extent of mixing issue varys from data set to data set.

Is there a principled metric for deciding how to block?

http://www.tcd.ie/
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Mixture model

Perhaps improve upon the mixture model approach already
seen in the literature for small problems.

P(X(i)
t | x(1:C)

t−1 ) =

C∑
k=1

ωki P(X(i)
t | x(k)t−1)

An auxilliary variable MCMC scheme where a single additional
chain is selected to have influence and estimate ωki as the
empirical distribution of how often chain k is selected to
influence chain i in the sampling.

Developing a scheme which enforces sparsity in the number of
non-zero ωki would be useful.
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Graphical models literature

Much computational pain is due to lack of sparsity. Can we
learn the structure before (or as part of) the inference?

Large literature on learning structure of graphical models, but
only with observed data(!) e.g. PC algorithm. Could they be
adapted?

Or, there are many options for variable selection if sticking with
a logistic transition model, such as spike-and-slab priors,
Bayesian lasso, etc.
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Improve current multinomial logistic regression

Adopt more recent logistic regression sampling schemes (e.g.
Polson et al., 2013).

Since we’re not that interested in the value of the coefficients
(save for equality to zero for structure), drop logistic regression
and use the probit link instead for faster computation (recall:
≈ 52% of computation time on sampling from KS distribution).

Other less expensive classification methods which fit into the
framework nicely?

In particular, want fast mixing samplers because want a single
sample from stationarity of transition model.

http://www.tcd.ie/


. . . . . .
Introduction

. . . . .
Existing approaches

. . . . . .
First try

. . . .
Performance

. . . . . . . . .
Random thoughts References

Spike-and-slab prior

A spike-and-slab prior formulation which enforces sparsity in
the logistic models fitted provides a natural way of learning the
graphical structure in the hidden layer.

This requires a Lebesgue measure zero spike, rather than the
now more common Ishwaran and Rao (2005) formulation. How
to handle Lindley (1957) paradox?

Too many models to compute model posterior directly as in
Mitchell and Beauchamp (1988). Natural ordering on models
for a Metropolis jump?

NB: crucially important that whatever formulation is used it
includes/excludes entire blocks of parameters: can’t have just
some states in another chain having effect.
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Missing covariate regression methods

There are methods for using prior predictive distributions on
missing covariates in regression problems . . .

. . . although here everything (including response!) is missing.
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Something else entirely?

In terms of application, we really believe the relationship is a
chain graph:

x

(1)
2 x

(1)
3x

(1)
1

x

(2)
1

x

(3)
1

x

(2)
2 x

(2)
3

x

(3)
2 x

(3)
3

y(1)1 y(1)2 y(1)3

y(2)2 y(2)3
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y(2)1
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An exciting paper from MCMSki

If time permits, a short discussion of Pakman and Paninski
(2013)
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