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Introduction
[ Jele}

Structural Reliability Theory

o Interest lies in the reliability of ‘systems’ composed of
numerous ‘components’.
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Introduction
[ Jele}

Structural Reliability Theory

o Interest lies in the reliability of ‘systems’ composed of
numerous ‘components’.

O—@
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o Lifetime of the system, T, is determined by:

o the lifetime of the components, Y; ~ Fy(-;1;)
o the structure of the system.
o the possible presence of a repair process.

via either the structure function or signature.
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Structural Reliability Theory

o Interest lies in the reliability of ‘systems’ composed of
numerous ‘components’.
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T2 2 100
Q—0O
o Lifetime of the system, T, is determined by:

o the lifetime of the components, Y; ~ Fy(-;1;)
o the structure of the system.
o the possible presence of a repair process.

il 4] e obion orsianature

via survival signature (Coolen and Coolen-Maturi, 2012)!
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Structural Reliability Theory

o Interest lies in the reliability of ‘systems’ composed of
numerous ‘components’.

O—Q
T2 &2 100
@—0
o Lifetime of the system, T, is determined by:
+ the lifetime of the components, Y; ~ Fy(-;1;)

» the structure of the system.
» the possible presence of a repair process.

o oithor 4] e S

via survival signature (Coolen and Coolen-Maturi, 2012)!
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» the structure of the system.
» the possible presence of a repair process.
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via survival signature (Coolen and Coolen-Maturi, 2012)!
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Introduction
Oeo

Masked System Lifetime Data (No Repair)

Traditionally, one may have failure time data on components
and then infer the parameters 1 of the lifetime distribution.
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Introduction
Oeo

Masked System Lifetime Data (No Repair)

Traditionally, one may have failure time data on components
and then infer the parameters 1 of the lifetime distribution.

t=1y3=1y23 =231

Inference a quite well understood problem here.
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Introduction
Oeo

Masked System Lifetime Data (No Repair)

Traditionally, one may have failure time data on components
and then infer the parameters 1 of the lifetime distribution.

resTTsT s s s s smsss 1
| |
| |
o T
| |
| |
- - - — - —— - -

Masked system lifetime data means only the failure time of the
system as a whole is known, not the component failure times or
indeed which components had failed.
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Introduction
[e]e] J

Masked System Lifetime Data (Repair)

Traditionally, one may have full schedule of failure and repair
time data on components and then infer the parameters ¢ of
the lifetime and repair time distributions.

.
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Introduction
[e]e] J

Masked System Lifetime Data (Repair)

Traditionally, one may have full schedule of failure and repair
time data on components and then infer the parameters ¢ of
the lifetime and repair time distributions.

Lo —

%t

ot

ot ,
Tooot :
T2t L%t To2ot X

—_— ¢ System Failed

¢{t}

Masked system lifetime data means the schedule of
‘f’;“ Trinity
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Repairable (Phase-type)
[ Jelele]

Toy Example : Redundant Repairable Components

State ‘ Meaning

C1 1 both C1 and C2 work
0—[ :'—0 2 C1 failed, C2 working
2 3 C1 working, C2 failed

4

system failed

.. a general stochastic process, e.g.

Preminimnl

3
4

B Trinity —_—> System Failed )
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Repairable (Phase-type)
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Continuous-time Markov Chain Model for {g}

State ‘ Meaning
1 both C1 and C2 work
2 C1 failed, C2 working
3 C1 working, C2 failed
4 system failed

C1 down

C2 down

X YV A0
[ D S W VO | RV
— 7= 8 T=1 0 A=A X

’ﬁ Dublin
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Repairable (Phase-type)
[e]e] o]

Definition of Phase-type Distributions

An absorbing continuous time Markov chain is one in which
there is a state that, once entered, is never left. That is, the
n+ 1 state generator matrix can be written:

S s
(3 7)
where Sis nx n,sis nx 1 and 0is 1 x n, with

s = —Se

Then, a Phase-type distribution (PHT) is defined to be the
distribution of the time to entering the absorbing state.

F =1—mTexp{ySle
Yo PHT(m,S) — 4 7Y . P1yS}
R fyly) = =" exp{yS}s >
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Relating to the Toy Example

State ‘ Meaning
1 both PS working
2 1 failed, 2 working
3 1 working, 2 failed
4 subsystem failed

C1 down
C2 up

2\

C1 up
C2 down

C1 down
C2 down

BB Trinit J
e Sy =nTexp{yS)s  Fy(y) =1-7"exp{ySle  Tcf
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Repairable (Phase-type)
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Inferential Setting

Cano et al. (2010) provide Bayesian learning results in the
context of analysing repairable systems when the stochastic
process leading to absorption is observed.

Data
For each system failure time, one has:

» Starting state
o Length of time in each state
« Number of transitions between each state

» Ultimate system failure time

EEX Trinity /;:!J
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Repairable (Phase-type)

{ Jejele]

Inferential Setting

Cano et al. (2010) provide Bayesian learning results in the
context of analysing repairable systems when the stochastic
process leading to absorption is observed.

Data
For each system failure time, one has:

» Starting state

oI b of time |

. Neml : o | |
» Ultimate system failure time

Reduced information scenario = Bladt et al. (2003) provide
a Bayesian MCMC algorithm, or Asmussen et al. (1996) provide
a frequentist EM algorithm.
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Repairable (Phase-type)
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Slide for Statisticians!

Strategy is a top-level Gibbs step which achieves the goal of
simulating from

p(m,S1y)
by sampling from
p(m, S, paths - |y)

through the iterative process

p(m, S |paths -,y)

p(paths : | ™, S7 y)

where p(paths - |7, S,y) is achieved by a rejection sampling
within Metropolis-Hastings algorithm.
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High-level Description of Bladt et al.

The following are key points to note about the MCMC scheme:

« fully dense rate matrix with separate parameters, e.g.

- S22 Siz s
So1 - S23 S
T —
S31 832 - 83
0 0 0 0

» no censored data
» slow computational speed in some common scenarios

» focused on ‘distribution fitting’

EEX Trinity /;:!J
Bil College
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High-level Description of Bladt et al.

The following are key points to note about the MCMC scheme:

« fully dense rate matrix with separate parameters, e.g.

Si2 Sz s1
So1 - S23 S
T —
S31 832 - 83
0 0 0 0

— we extend to allow structure to be imposed

» no censored data
— we accommodate censoring

» slow computational speed in some common scenarios
— we provide novel sampling scheme

» focused on ‘distribution fitting’
9. \Tnmty

. . =L
P ol — all together shifts focus to stochastic modelling Sﬁ .
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Statistical -vs- Stochastic

In other words, we adapt the MCMC algorithm to be fit for
performing inference when Phase-types are used for stochastic
rather than statistical modelling.

Stochastic Model — Aslett & Wilson

“Stochastic models seek to represent an underlying physical
phenomenon of interest, albeit often in a highly idealised way,
and have parameters that are physically interpretable.” — Isham

Statistical Model — Bladt et al

“In contrast, statistical models are descriptive, and represent the
statistical properties of data and their dependence on covariates,
without aiming to encapsulate the physical mechanisms
involved.” — Isham

EEX Trinity
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Toy Example Results

100 uncensored
observations simulated
from PHT with

-3.6 1.8 1.8
S = 9.5 —11.3 0
9.5 0 —-11.3

— A=18, A\, =95

EEI Trinity
Bil College
&’ Dublin

Param

Si2
Si3

52

| | |
05 10 15 20

Parameter Value

53
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Toy Example Results

100 uncensored - Param
observations simulated , 03- S.
from PHT with g :
502- S31
-3.6 1.8 1.8 Q
S=| 95 -11.3 0 0.1 - Ar
9.5 0 —-11.3 /
0.0 - —
= A;=18, A\, =95 zlg cl) 1'0 1I1 1|2 1I3 1I4 1|5

Parameter Value

Reliability less sensitive to A,
Daneshkhah and Bedford (2008)/;\§ﬁ
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Toy Example Results

12 -
100 uncensored 10 - P
observations simulated S 8- aram
from PHT with = 51
s 6-— S
) 23
-36 1.8 1.8 Qo g
S=1| 95 —-113 0 32
95 0 —11.3 29
0-
= A=18, A, =95 0.0 0|.1 ol.z 0|.3 0I.4 0|.5
Parameter Value
EEX] Trinity o\g
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Solution: “Exact Conditional Sampling”

Metropolis-Hastings
forwy (o™ 8, Y =y)

A

Rejection Sampling
fo 1wy (@]m S, Y >y)
CTMC Sampling
f<I> | \I/(¢ ’ ™, S)

| Colle;
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Repairable (Phase-type)
[ Jelele]

Solution: “Exact Conditional Sampling”

1) Starting state ~ discrete

O ~

Metropoli

fo v,y (#]

/ / ii) Advance time ~ Exponential
ejection

Jo v,y (@1

6 ~ Exp(=Gginr pty)

iii) Select next state ~ discrete

I Ut~ {—Gytnr g0 /Gyt pinr }

S iv) If not absorbed, ¢ =t + 0, loop to ii

EEI Trinity
Bil College
&’ Dublin
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Repairable (Phase-type)
[ Jelele]

Solution: “Exact Conditional Sampling”

Metropoli————— £ )
f (/ e.g. Starting state mass function changes
. with conditioning:
P(¢1% = i|m,S) =m
cjpflion
v,y (9]
/

el exp{Sy}s m;

Pt =i|m, G, Y =y) =

CTMC § T exp{Sy}s
Jo @
iTri;\i;ye /;\,J
Sfl-
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‘Tail Depth’ Performance Improvement

log[Time (secs)]
2
|

2 3 4 5 6

Upper tail probability (10/-x)

EEX Trinity
M4y College
&’ Dublin

Method
~o— ECS

—— MH
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Overall Performance Improvement

This shows the new method keeping pace in ‘nice’ problems and
significantly outperforming otherwise.

299 0 300 1

-2 001 199 O
T = ( 1 =300 O 299>
0 0 0 0

No problems i-iii

MH ECS
t 16 72
s 104 19

All problems i-iii

MH ECS
10.2 hours 0.016 secs
9.4 hours 0.015 secs

2,300,000 x faster on average in hard problem

EEX Trinity
Bil College
&’ Dublin
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R Package: PhaseType

8eno The Comprehensive R Archive Network "

E [E] | @ cran.r-project.org.

PhaseType: Inference for Phase-type
Distributions

Functions to perform Bayesian inference on absorption time data
for Phase-type distributions. Plans to expand this to include
frequentist inference and simulation tools.

CRAN

Mirrors Version: 013

What's Depends: coda, ggplot2, reshape

new? Suggests: actuar

Task Views Published: 2012-10-16

Search Author: Louis Aslett

About R Maintainer: Louis Aslett <louis at maths.tcd ie>
R License: GPL-2 | GPL-3

Homepage URL: htp:/iwww Jouisaslett.com/Phase

http://cran.r-project.org/package=PhaseType

Trinity o\g
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Missing Data

Again, the missing data is what makes the inference hard.
Tanner and Wong (1987) is a classic solution to this in a
Bayesian framework if the missing data can be simulated.
Consider the system {5 o} from the introduction, with
observed system failure times:

t={1.1,4.2}
Need realisations concordant with each observation:

College
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Missing Data

Again, the missing data is what makes the inference hard.
Tanner and Wong (1987) is a classic solution to this in a
Bayesian framework if the missing data can be simulated.

Consider the system {5 o} from the introduction, with
observed system failure times:

t = {1.1,4.2}
Need realisations concordant with each observation:

T e
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# College /;\gfl =

iﬁ Dublin



http://www.tcd.ie/
http://www.sfi.ie/

No Repair (Parametric)
9000000

Missing Data

Again, the missing data is what makes the inference hard.
Tanner and Wong (1987) is a classic solution to this in a
Bayesian framework if the missing data can be simulated.

Consider the system {5 o} from the introduction, with
observed system failure times:

t = {1.1,4.2}
Need realisations concordant with each observation:

1 =1.1 0.9

=1 = —>
2.7 1.1

_E—’:l_ “i-

iii Dublin
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Missing Data

Again, the missing data is what makes the inference hard.
Tanner and Wong (1987) is a classic solution to this in a
Bayesian framework if the missing data can be simulated.

Consider the system {5 o} from the introduction, with
observed system failure times:

t = {1.1,4.2}
Need realisations concordant with each observation:

my ={0.9,2.7,1.1}

=11 09
=1 = —>
2.7 1.1

_E—’:l_ “i-
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Missing Data

Again, the missing data is what makes the inference hard.
Tanner and Wong (1987) is a classic solution to this in a
Bayesian framework if the missing data can be simulated.

Consider the system {5 o} from the introduction, with
observed system failure times:

t = {1.1,4.2}
Need realisations concordant with each observation:

my ={0.9,2.7,1.1}
v=u = {20F
College Sfl -

iﬁ Dublin
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Missing Data

Again, the missing data is what makes the inference hard.
Tanner and Wong (1987) is a classic solution to this in a
Bayesian framework if the missing data can be simulated.
Consider the system {5 o} from the introduction, with
observed system failure times:

t={1.1,4.2}
Need realisations concordant with each observation:

my— {0.9,2.7,1.1}
e

to =4.2 4.2

EER Trinity /;\,/
o ol sfi
¥ Dublin 3.2 1.3


http://www.tcd.ie/
http://www.sfi.ie/

No Repair (Parametric)
9000000

Missing Data

Again, the missing data is what makes the inference hard.
Tanner and Wong (1987) is a classic solution to this in a
Bayesian framework if the missing data can be simulated.
Consider the system {5 o} from the introduction, with
observed system failure times:

t={1.1,4.2}
Need realisations concordant with each observation:

my =1{0.9,2.7,1.1,3.2,4.2,1.3}
v Lo+

to =4.2 4.2
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Missing Data

Again, the missing data is what makes the inference hard.
Tanner and Wong (1987) is a classic solution to this in a
Bayesian framework if the missing data can be simulated.

Consider the system {5 o} from the introduction, with
observed system failure times:

t = {1.1,4.2}
Need realisations concordant with each observation:

e P
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Missing Data

Again, the missing data is what makes the inference hard.
Tanner and Wong (1987) is a classic solution to this in a
Bayesian framework if the missing data can be simulated.
Consider the system {5 o} from the introduction, with
observed system failure times:

t={1.1,4.2}
Need realisations concordant with each observation:

y =1{09,2.7,1.1,3.2,4.2,1.3}
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Missing Data

For any statisticians, that is:

fY|\I/,T(y1'7" s Ym- ’wut)

)

f‘I’\Y,T(¢|Y1'7"'7ym"t)
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Missing Data

For any statisticians, that is:

fY|\IlT Yi,-.- )’? [, t)

f@\Y,T(¢|Y1-,-/ym~at) )
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Missing Data

For any statisticians, that is:

fY|\IlT Yi,-.- )’? [, t)

( f@\Y,T(¢|Y1-,-/ym~at)

What is the challenge?

)

Toool  BGH b1t =7
b=t = L O B ) =
Toool PIGSHLt) =7
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System Signatures

The signature (Samaniego, 1985) is less widely used than the
structure function, but in some ways more elegant.

Definition (Signature)

The signature of a system is the n-dimensional probability
vector s = (s1,...,s,) with elements:

s =P(T= Yp)

where T is the failure time of the system and Y., is the ith
order statistic of the n component failure times.

EEXJ Trinity ?"1
Bil College
&’ Dublin S |
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System Signatures

The signature (Samaniego, 1985) is less widely used than the
structure function, but in some ways more elegant.

Definition (Signature)

The signature of a system is the n-dimensional probability
vector s = (s1,...,s,) with elements:

s =P(T= Yp)

where T is the failure time of the system and Y., is the ith
order statistic of the n component failure times.

EEI Trinity

U
i 21 =
@ o = s=(0,3,3) sfl-

e.g.
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Sampling Latent Failure Times

It can be shown:
fy| (Yirs -5 Y3 ¥ [ )

x Z [fy| Y<t(yi(1)7 <o Yi(j—1)s ¥)

j=1
X fY\ Y>t(yi(j+1)7 cee yi(n);lﬁ)

x Ly (W)

< (07 )) vty Pt

College
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Signature based data augmentation

@® With probability

P(j) oc (j B 1) Fy(ti ) Fy(t; )" 7 s

it was the jth failure that caused system failure.
® Having drawn a random j, sample

o j—1values, y;,..., Y1), from Fy, v<i;(-;), the
distribution of the component lifetime conditional on failure

before t;

o n—jvalues, Y;ji1ys-- -, Y, from Fy| v>i,(+31), the
distribution of the component lifetime conditional on failure
after ¢;

and set y; = ;.

EEI Trinity

,,-,.,
Bil College
&’ Dublin S |
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Prerequisites

This is a very general method. The prerequisites for use are,

® The signature of the system;

® The ability to perform standard Bayesian inference with
the full data;

® The ability to sample from F'y|y.(-;%) and
Fy|yst,(-39).

College
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Prerequisites

This is a very general method. The prerequisites for use are,
® The signature of the system;
Easy for systems that are not huge

® The ability to perform standard Bayesian inference with
the full data;
FEasy for common lifetime distributions
® The ability to sample from F'y| y.,(-;1) and

Fy|yst,(-39).
Depends!

College
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Canonical Exponential Component Lifetime Example

5 - l
o) X
% 1
> ’ | i
: | =
£ . L [ — |
E;;_i i | |i__i I ] —— ——1
s}
=) —1 |:|
[a W} x :
2- ' ’

Trinity /;\9/
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No Repair (Topological)
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Unknown Topologies

A little ‘blue skies’ academic thinking ...

reEesTsEsEsEsEsEsEsEss- 1
| |
| |
T
| . |
| |

t=yr =yr3 =31
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Uniqueness of the Signature

Signature repetition

Type Order | Unique ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 | Total

2 2 0|0]0[0] 01O 2
Coherent 3 5 0]0|0J0O|O0O]|O 5
systems 4 14 310100010 20

5 43 1512162101 180

2 2 0O0|0jO0O[0] 01O 2
Coherent 3 4 0|0]0[0] 01O 4
systems 4 11 0O [0j]0]O]O0]O 11
/w graph 5 27 4 10(0]0] 0|0 35

College

“{w Trinity /;\’J
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Signature & Topology

Order 4 coherent systems with graph representation.

System . System .
Topology Signature Topology Signature
—0—0—0—0— (1,0,0,0) {oHST (0,%%70)

—o—ofgF (3:5,0,0) oot (0,34 1)

% (LHa0) | gt (0hG Y

~fh  GhR0 | f5d ok

253 2 1
(0>§7§a0) % (0?07071)
g, (0,3,3,0)
Téll:o)nlli%}%ln

/;\gfl =


http://www.tcd.ie/
http://www.sfi.ie/

No Repair (Topological)
000e00

Jointly Inferring the Topology

fY|‘II,T(y1~7' -y Yme ’¢»t)

)

oy lyi, s Ym.,t)

College

\Trinity o\g
571 Dublin Sfl


http://www.tcd.ie/
http://www.sfi.ie/

No Repair (Topological)
000e00

Jointly Inferring the Topology

fY|\I/,T(YI~7"' » Ym- ‘watvs)

)

f\I’|Y,T(¢IY1~7"‘7Ym-7ta)%()

College

\Trinity o\g
571 Dublin Sfl


http://www.tcd.ie/
http://www.sfi.ie/

No Repair (Topological)
000e00

Jointly Inferring the Topology

fY|\I/,T(YI~7"' » Ym- ‘watvs)

)

f\I’|Y,T(¢IY1~7"‘7Ym-7ta)%()

After satisfying a few technical subtleties, implementation is
not too difficult.
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Canonical Exponential Component Lifetime Example
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Phase-type Component Lifetime Example
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Exchangeable Systems

The i.i.d. systems assumption easily relaxed to exchangeability.
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Extreme generality of the solution allows wide variety of

component lifetime distributions. Solutions to the prerequisites

have been derived for Phase-type distributed components.

Failure Rate Repair Rate

Plot
— Ground truth
---- Prior predictive

—-- Posterior predictive

May interpret as:
» Repairable redundant subsystems;

Trnit? Theoretically dense in function space of all positively
College
& Dublin supported continuous distributions.
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R Package: ReliabilityTheory

800 The Comprehensive R Archive Network o

[E] E] |_(§ cran.r-project.org

ReliabilityTheory: Tools for structural
reliability analysis

A variety of tools useful for performing structural reliability
analysis, such as with structure function and system signatures.
Plans to expand more widely.

;d“;“m Version:  0.1.0

What's Depends: igraph (= 0.6-1)

new? Imports:  sfsmisc, combinat, FRACTION, mcme, PhaseTvpe
Task Views (2 0.1.3), actuar, HI

Search Published: 2012-10-30

About B Author: Louis Aslett

R Maintainer: Louis Aslett <louis at maths.tcd.ie>
Homepage License: GPL-2|GPL-3

TIRT - it /nww lnnisaslett comd

http://cran.r-project.org/package=ReliabilityTheory
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Future
[

Future Work

A couple of the many important avenues to be pursued:

o Many partial information scenarios between full
information and the extreme presented here.

« Extend the non-repairable work to non-identical
components using the survival signature (Coolen and
Coolen-Maturi, 2012).
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