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Introduction
Introduction (I)

Objective: inference on system/network reliability given
component test data.
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Aslett, L. J. M., Coolen, F. P. A., & Wilson, S. P. (2014). Bayesian w
inference for reliability of systems and networks using the )
e SUrvival signature. Risk Analysis.
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Introduction

Introduction (II)

But, what are the privacy requirements of data owners?

New objective: inference on system/network reliability
maintaining privacy.
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Introduction
Introduction (III)

Developments in cryptography in 2009 solved an open problem
which existed since 1978.

We’ll see these developments enable preservation of privacy,
almost completely, because the survival signature allows
system lifetime to be expressed as a low order homogeneous
polynomial.

K
P(Ts > t) ”"Z Z[ (I, ..., I H(’}Z‘)[Fk<t>1mk—’k[ﬁk<t>1’k]

h= Ix=0 k=1
An accessible background on emerging area of encryption and
statistics appearing soon:

Aslett, L. J. M., Esperanca, P., & Holmes, C. C. (2015). Secure
statistical analysis. Technical report, University of Oxford.
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Bayesian Inference

Component inference (parametric)
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Given test data directly on the components, inference is a well
studied problem. For example, parametrically we can model
the lifetime of a component of type k via likelihood function f;

T~ fi(-51)

Then, given iid test data t* = {t{, ... tX } for components of
type k, posterior density is:

fo 7 (Wi | £) o fa, () T faltfs )
i1

Straight forward to use MCMC to generate posterior samples of
) which encapsulates uncertainty in the parametric family.
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Bayesian Inference

Component inference (non-parametric I)
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Or, non-parametrically we can observe that at fixed time ¢,
probability a component of type k functions is Bernoulli(p¥) for
some unknown pX.

= number functioning at time t in iid batch of n; is
Binomial(ny, p¥).

Let S¥ € {0, 1,...,n;} be number of working components in
test batch of n; components of type k. Then,

Sf ~ Binomial(nk,p’t‘) vt>0

Given the same test data t* = {t{, ...t} }, for each t we can
form corresponding observation from Binomial model
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Bayesian Inference

Component inference (non-parametric II)

#-like.org.uk

Taking prior pk ~ Beta(ak, 3X), exploit conjugacy result
pE |st ~ Beta(ag + st, Bt + ny — s¢)

Then, posterior predictive for number of components surviving
in a new batch of m; components is

C¥| s* ~ Beta-binomial(my, ok + s*, gk + nj — s
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Bayesian Inference

Component inference (non-parametric II)
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Taking prior pk ~ Beta(ak, 3X), exploit conjugacy result

k| ck k ok pk k
Dr | st ~ Beta(a; + ¢, B¢ + g — S¢)
Then, posterior predictive for number of components surviving
in a new batch of m; components is

C¥| s* ~ Beta-binomial(my, ok + s*, gk + nj — s

Summary: for any fixed t, sk provides a minimal sufficient
statistic for computing posterior predictive distribution of the
number of components surviving to t in a new batch, without
any parametric model for component lifetime being assumed.
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Bayesian Inference

Propagate uncertainty: naive approach

In principle, the structure function can be used to propagate
component lifetime uncertainty to the system.

f{( Hl—m)

j=1 ieC

where {Cy, ..., Cs} is the collection of minimal cut sets of the
system. Then,

P(Ts- > t|s,...sK)
—/ /qbpt,--,pt )P(pt|st)...P(pf|sK)dp; ... dpE

where p} is the element of {p}, ..., pK} corresponding to
component i.

s Have fun with that integral for large K . .. ! S o
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Bayesian Inference

Survival signature

Coolen & Coolen-Maturi (2012) rethought signatures with the
objective of retaining separation of structure and component
lifetimes for multiple component types.

Definition (Survival signature)

Consider a system comprising K component types, with m,
components of type k € {1, ..., K}. Then the survival signature
O(ly,...,Ig), with [ € {0,1,...,m}, is the probability that the
system functions given precisely [ of its components of type k
function.

CI>(11,...,IK):[11_<[ (m">1] > e

where S]h. Jz —{X - 1 1 lk Vk}
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Bayesian Inference

Propagate uncertainty: survival signature

P(Ts > t|t!,...t5

/ /[ZO IKz_:cbll,...,

X H (I;;k) [Fr(t; )] ™k [1 — F(t; )|
k=1

X fy, o (A [£) . fy | (i | £5)

my mg
= Z...Z(I)(ll,...,h()
=0 Ix=0

XH< )/Fk (601 = Fe(ts )]y, el | £

/-~ .Final term post pred of [, comp of type k surviving to t. 5
12/41
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Homomorphic Encryption

Introduction to cryptography

« Unencrypted number, m € M, is referred to as a message.
« Encrypted version, ¢ € C, is referred to as a cipher text.
Pair of ‘keys’ (ks, k), secret and public.

« Injective map (not function), Enc : M — C.

* Surjective function, Dec : C — M.

Fundamental point
Easy
Enc(k,,m) = ¢

Hard without kg

Dec(ks,c) =m

.. crucial relation:

F oy m = Dec(ks,Enc(ky,,m)) VmeM
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Homomorphic Encryption

‘Brittle’ encryption
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Most cryptography schemes are ‘brittle’ in that we can’t
manipulate the contents of the mathematical vault: must
decrypt to compute, then encrypt the result. i.e. seems only
useful for shipping round static data!

In other words, if
¢1 = Enc(ky, my)
G = Enc(kp,mz)
then in general, for a given function g(-, ), Zf(-, -) (not

requiring k) such that

Dec(k57f(cl762)) :g<m17m2) vmlva EM
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Homomorphic Encryption

Homomorphic encryption

Rivest et al. (1978) hypothesised that a limited set of functions
may be possible to compute encrypted: specifically those
involving addition and multiplication (theoretically exciting —
computational complexity & polynomial approx).

Definition (Homomorphic encryption scheme)

An encryption scheme is said to be homomorphic if there is a
set of operations o € Fj; acting in message space (such as
addition) that have corresponding operations ¢ € F¢ acting in
cipher text space satisfying the property:

Dec(ks, Enc(ky,my) o Enc(ky,my)) =myomy Vmy,myeM

A scheme is fully homomorphic if Fyy = {+, x} and an arbitrary
number of such operations are possible. GEy
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http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

Homomorphic Encryption

* Fan & Vercauteren (2012) scheme : notation

« Zg=1{n:nc,-q/2<n<q/2}

* [a]q is unique integer in Zg st [al; = a mod q

* Z[x], Zq[x] denote polynomials with coefficients in Z and
Zq respectively

» &, (x) is nth cyclotomic polynomial

« Dpa(x) =22 41

* Interest in elements of polynomial ring R; = Zg[x]/ ®54(x)

 Polynomials written a or a(x)

* a ~R; = uniform random draw from R,

* a~x = discrete multivariate Gaussian draw in R,

Messages m(x) € M= R,
Cipher texts c € C £ Ry x Ry

#-like.org.uk
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Homomorphic Encryption

*Fan & Vercauteren (2012) scheme : setup

 Parameters

¢ d, degree of both the polynomial rings M and C

« tand g, coefficient sets of polynomial rings M and C

¢ o, magnitude of the discrete Gaussian randomness for
semantic security

* Key generation

 Secret key:
k; ~ Ry

(i.e. sample a 27~ 1 binary vector for the polynomial
coefficients).
 Public key:
kp = ([—(a- ks + &)]g, @)

wherea ~ R;and e ~ .
[k, hard to extract due to ring LWE hardness]

#-like.org.uk
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Homomorphic Encryption

* Fan & Vercauteren (2012) : encryption/decryption

« Encode
Need m € Z expressed as polynomial ring element. Write
in b-bit binary representation, m = Zn 0 ! a,2" then

construct r(x) = Efl:&_l a,x" € R, where a, =0V n > b.
* Encryption Enc(k,, m)
First encode m € Z as ih € R;
C:= ([kpy -u+e; +A-mjg, [Kyy - u+e)q)

where u,e,e, ~ x and A = [1].
» Decryption Dec(k;, ¢)

5 Ht[cl +6 'ks]qH
B q t
,(/ so that m = m(2)

#-like.org.uk
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Homomorphic Encryption

* Fan & Vercauteren (2012) : addition/multiplication

 Addition, + Standard vector and polynomial addition
with modulo reduction:

c1 + ¢ = ([¢11 + Ca1lgs [€12 + C22]q)

e Multiplication x Multiplication increases length of the
cipher text vector:

€1 XC = (Ht(cuquﬂuq? Ht(cu 'szc‘;flz 'Czl)Hq,

=]

Still possible to recover m by modifying decryption to be
Hé [ + ¢y - ks +c3- K - ks}qw } g it is preferable to perform a

‘relinearisation’ procedure which compacts the cipher text &
F oy to a vector of two polynomials again.
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Homomorphic Encryption

Limitations of homomorphic encryption
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@ Message space
« Commonly only easy to encrypt binary/integers
® Cipher text size

« Present schemes all inflate the size of data substantially
(e.g. IMB — 16.4GB)

® Computational cost

 1000’s additions per sec
e =~ 50 multiplications per sec

@ Division and comparison operations
« Impossible!

@ Depth of operations

+ After a certain depth of multiplications, need to ‘refresh’
cipher text: hugely time consuming, so avoid!



http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

Privacy Preserving Protocol

Privacy Preserving Protocol
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Privacy Preserving Protocol

Back to the problem at hand ...

o

Manufacturer 1

Manufacturer K

»\\/

System Designer
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Privacy Preserving Protocol

Step 1: Encrypt system design (I)

System designer:
@ Generate public/private keys (ks, k,) = Keygen()
® Compute the full survival signature
q)(ll,...,lK)Vlk S {0,...,mk}
©® Arrange the survival signature table into a matrix,
encrypting the survival signature probability:

0 - 0 Enc(ky[10"®(0,...,0)])

0 -~ 1  Enc(ky[10"(0,...,1)])
==L - Ik Enclky [10°0(L,. ... L))

m; --- mg Enc(kp, [10"®(my,...,mg)])

where v is the required number of decimal places of
precision in the final uncertainty quantification.
ek @) Decide times to compute reliability, t = {t,...,tr}
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Privacy Preserving Protocol

Step 2: Communication to manufacturer 1

System designer sends to manufacturer 1:

* kp, designer’s public key

. v, decimal places of accuracy

s\ 2E 1, type 1 component quantities

« n={n',...,nT} where y/ £ = g, VJ, that is T copies of
encrypted survival signature probabilities

* t, times to evaluate reliability

Thus,

+ the manufacturer will see how many of their own
components are being used in the system (), is
unencrypted);

* due to repetition, the manufacturer will have weak
impression of overall system size (open Q);

* no knowledge of the survival signature probability, so

ieorgk can’t solve for exact component numbers or layout.
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Privacy Preserving Protocol

Step 3: Manufacturer i computation, i € {1,... K}

.. manufacturer i will posess ky, v, A;, n and t.

Manufacturer i then:

« Constructs vectors 7/*,j € {1,..., T}, where element i is:

771:* _ my B(A1 ‘1’@{1}. +ng,m1 — A1 —1—65 + _ng)
i Ali B(Oztlj + S%i,ﬁtli +n; — 5%})

» Updates all elements of 7 received by:

o= fenc, [109])

#-like.org.uk
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Privacy Preserving Protocol

Step 4: Further communication

Manufacturer i sends to manufactureri+ 1,i € {1,...,K— 1}

* 7, updated collection of encrypted signature vectors at
times selected for reliability evaluation

System designer sends to manufactureri + 1:

* kp, designer’s public key

v, decimal places of accuracy

* A1 = E. i1, type i + 1 component quantities
e t, times to evaluate reliability

Thus, designer doesn’t see incrementally updated 7, so cannot
infer component reliabilities stepwise.

#-like.org.uk
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Privacy Preserving Protocol

Step 5: Final computation & communication

Once manufacturer K has completed regular computation step,
there is one additional computation step:

« For each j, compute homomorphically:
7= Z 77{
i

Then, 7 is finally returned to the system designer. Upon
decryption, due to homogeneity of polynomial:
m mg

1
= 10K+ SN e, k)

;=0 Ix=0
H( > lk+at+5tamk_lk+ﬁt+”k_5t)
X
B( t]' [ﬂﬁti—'_nk_sg‘)
= 10®*+Dp(Ts. > ¢ | 2L, .. . £X)

£ewe but designer never saw t!, . .. tX, manufacturers never saw S.
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Privacy Preserving Pr

System Designer
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Privacy Preserving P
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Manufacturer 1
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Privacy Preserving P

0 - 0 Enc(kp [10°®(0,....0)])
0 - 1 Enc(ky [10°®(0,....1)])
Lol Enc(ky [10°0(L,...,1x)])
my myg Enc(kp, LIOV(I)(.N“,. omi)])
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@
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Privacy Preserving P

0 Enc(kp, [10®(0,...,0)])
1 Enc(ky, [10°0(0,...,1)])
Ik Enc(ky, |10°®(1s, ... 1x)])

mpg  Enc (kp, [10"®(my,...,mg)])

Manufacturer 1
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@
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=
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Privacy Preserving P

ks @ Fkp
1 0 - 0 Enc (kp, [10"®(0, ..., 0)])
System Designer 0 - 1 Enc (kp, [10"®(0,....,1)])
O(ly,. . lk) - : :
== Lok Enc (kp, [10"®(l1, . .., Ix)])
my my  Enc(ky, [1(]“‘1’(‘7711 ..... mg)])

© .

Manufacturer 1

l ‘ — gl ! E

Manufacturer K
&
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Privacy Preserving P

a8
0 Enc (kp, [10°9(0, ...,
Enc (kp, [10V®(0

O(l1y. 1K) : :
o ¢ Enc(kp, [10"®(1
Enc (k. [1(]“‘1’(.7711 ,,,,, mg)])

System Designer

SIS
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Privacy Preserving P

ks @ Fkp
1 0 - 0 Enc (ky, [1079(0, ..., 0))
System Designer 0 - 1 Enc (ky, [1079(0, ..., 0
O(ly,. . lK) _ : :
ST n o Ik Enc(ky, [10°0(1,. .. lk)])

my  Enc(ky, [10°®(my, ...,

Manufacturer 1

l ‘ — gl ! E

Manufacturer K
&
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Privacy Preserving Protocol

Practicalities (I): survival signature

Survival signature easily computed using ReliabilityTheory
package (Aslett 2012).

library(ReliabilityTheory)

g <- graph.formula(s -- 1 —— 2:4:5, 2 -—- 3 —— t, 4:5 -6 — t,
s—-7-—-8—t,s-—-9—10 —- 11 - t, 7 —— 10 — 8)

V(g)$compType <— NA

V(g)$compType [match(c(”1”,”6”,”11"), V(g)$name)] <- "T1”
V(g)$compType[match(c(”2”,”3”,”79”), V(g)$name)] <- "T2”
V(g)$compType [match(c(”4”,”5”,”10"), V(g)$name)] <- "T3”
V(g)$compType [match(c(”7”,”8”), V(g)$name)] <- "T4”

sig <- computeSystemSurvivalSignature(g)

#-like.org.uk
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Privacy Preserving Protocol
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sig

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

ONOULRA WN R

NRPRPRPRERPRRRLRPRERO
S VWONOOUNWNERS

(SNSRI BT INS BN ISR BN IS TGS IS IS TGS IS IS TGS IS I

—

P RPRPPRPPPPPOOOOOOODOOOO0OOOOOO0OOON

—

NNRFPPRPPOOOWWWMNNNRRERPRPOOOW

T

4
(/]
1
2
(/]
1
2
(/]
1
2
(/]
1
2
(/]
1
2
(/]
1
2
(/]
1

Probability

r
0.00000000
0.00000000
1.00000000
0.00000000
0.00000000
1.00000000
0.00000000
0.00000000
1.00000000
0.
0
1
0
0
1
0
0
1
0
1)

00000000

.00000000
.00000000
.00000000
.00000000
.00000000
.00000000
.05555556
.00000000
.00000000
211111111
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Privacy Preserving Protocol

Practicalities (II): homomorphic encryption
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Homomorphic encryption without knowing any abstract
algebra/number theory in HomomorphicEncryption package
(Aslett 2014).

library(HomomorphicEncryption)

p <- pars(”FandVv”)
keys <— keygen(p)

Xi <- enc(keys$pk, round(1075%xsig$Probability))
Xi

## Vector of 192 Fan and Vercauteren cipher texts



http://www.i-like.org.uk/
http://www.stats.ox.ac.uk/

Privacy Preserving Protocol

dec(keys$sk, Xi[17])

## [1] 5556

dec(keys$sk, sum(Xi))

## [1] 11685185

sum(sig$Probability)

## [1] 116.8519

#-like.org.uk
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Privacy Preserving Protocol

How much can someone learn by seeing )\;?

* Not yet proved how much one can learn about component
makeup. For example, it may be that only one possible
quantity of other components could result in the vector );.

« eg. ) =(0,0,1,1,2,2) = there is exactly one
component of one other type in the system
* Q: only this trivial example or do others exist?

« However,

« without seeing the survival signature probability, seems
you can say nothing about the layout.

¢ Q: may be a problem mainly in smaller systems where
combinatorics against you?

#-like.org.uk
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Privacy Preserving Protocol
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