Parametric and Topological Inference for Masked System Lifetime Data

Louis J. M. Aslett and Simon P. Wilson

Trinity College Dublin

 $9^{\rm th}$ July 2013

Introduction $\bullet 0000$	Parametric Inference 0000000	Topological Inference 0000000000	Future o	References
Structural	Reliability The	eorv		

Introduction	Parametric Inference	Topological Inference	Future	References
●0000	0000000	0000000000	o	
Structural	Reliability The	POrv		

- Lifetime of the system, *T*, is determined by:
 - the lifetime of the components, $Y_i \sim F_Y(\cdot; \psi_i)$
 - the structure of the system.

J

• the possible presence of a repair process.

via either the structure function or signature.

Introduction	Parametric Inference	Topological Inference	Future	References			
00000	0000000	00000000000					
וח ויו חו							
Structure	al Rehability Ir	leorv					

- Lifetime of the system, T, is determined by:
 - the lifetime of the components, $Y_i \sim F_Y(\cdot; \psi_i)$
 - the structure of the system.
 - the possible presence of a repair process.

via either the structure function or signature.

Introduction $\bullet 0000$	Parametric Inference 0000000	Topological Inference 0000000000	Future 0	References
Structure	al Reliability Th	leorv		

- Lifetime of the system, *T*, is determined by:
 - the lifetime of the components, $Y_i \sim F_Y(\cdot; \psi_i)$
 - the structure of the system.
 - the possible presence of a repair process.

via either the structure function or signature.

Introduction $0 \bullet 000$	Parametric Inference 0000000	Topological Inference 0000000000	Future o	References
Structure	Functions & S	ignatures		

The structure function (Birnbaum *et al.*, 1961) is a mapping $\varphi(\cdot): \{0,1\}^n \to \{0,1\}$ which determines operation of the system given the state of the *n* components.

Introduction	Parametric Inference	Topological Inference	Future	References
00000				
Structure	e Functions & S	ignatures		

The structure function (Birnbaum *et al.*, 1961) is a mapping $\varphi(\cdot): \{0,1\}^n \to \{0,1\}$ which determines operation of the system given the state of the *n* components. The signature (Samaniego, 1985) is less widely used, but in some ways more elegant.

Definition (Signature)

The signature of a system is the *n*-dimensional probability vector $\mathbf{s} = (s_1, \ldots, s_n)$ with elements:

$$s_i = \mathbb{P}(T = Y_{i:n})$$

where T is the failure time of the system and $Y_{i:n}$ is the *i*th order statistic of the *n* component failure times.

Introduction $0 \bullet 000$	Parametric Inference 0000000	Topological Inference 0000000000	Future o	References
Structure	Functions &	Signatures		

Definition (Signature)

The signature of a system is the *n*-dimensional probability vector $\mathbf{s} = (s_1, \ldots, s_n)$ with elements:

$$s_i = \mathbb{P}(T = Y_{i:n})$$

where T is the failure time of the system and $Y_{i:n}$ is the *i*th order statistic of the *n* component failure times.

e.g.

Introduction 00000	Parametric Inference 0000000	Topological Inference 0000000000	Future o	References
Masked Sy	stem Lifetime I	Data		

Introduction 00000	Parametric Inference	Topological Inference 0000000000	Future 0	References
Masked Sy	vstem Lifetime l	Data		

Straight-forward Bayesian inference:

$$f_{\Psi \mid Y}(\psi \mid \mathbf{y}) \propto \left\{ f_{Y}(y_{1};\psi) f_{Y}(y_{3};\psi) \left(1 - F_{Y}(y_{2};\psi)\right) \right\} f_{\Psi}(\psi)$$

Introduction 00000	Parametric Inference 0000000	Topological Inference 0000000000	Future o	References
Masked Sy	rstem Lifetime I	Data		

Introduction 00000	Parametric Inference 0000000	Topological Inference 0000000000	Future o	References
Masked Sy	rstem Lifetime I	Data		

Masked system lifetime data means only the failure time of the system as a whole is known, not the component failure times or indeed which components had failed.

Introduction	Parametric Inference	Topological Inference	Future	References
00000				

The literature on inference for masked system lifetime data is extensive, but:

- heavily focused on specific structures (e.g. series/competing risk systems, see Reiser *et al.* (1995) or Kuo and Yang (2000))
- or focused on specific lifetime distributions (e.g. Exponential, see Gåsemyr and Natvig (2001))
- or does not focus on inferring the parameters of the model (e.g. infer hazard, see Ng *et al.* (2012)).

Why?

The literature on inference for masked system lifetime data is extensive, but:

- heavily focused on specific structures (e.g. series/competing risk systems, see Reiser *et al.* (1995) or Kuo and Yang (2000))
- or focused on specific lifetime distributions (e.g. Exponential, see Gåsemyr and Natvig (2001))
- or does not focus on inferring the parameters of the model (e.g. infer hazard, see Ng *et al.* (2012)).

Why? Likelihood can be complex:

'init'

$$L(\psi; \mathbf{y}) = \prod_{i=1}^{m} \left. \frac{\partial}{\partial t} F_T(t; \psi) \right|_{t=t_i}$$
$$= \prod_{i=1}^{m} \left. \frac{\partial}{\partial t} \left[1 - \left\{ 1 - F_{Y_2}(t) \right\} \left\{ 1 - F_{Y_3}(t) \right\} \right] F_{Y_1}(t) \right|_{t=t_i}$$

Introduction 00000	Parametric Inference 0000000	Topological Inference 0000000000	Future 0	References
Masked	System Lifetime	Data (Repair)		

Traditionally, one may have full schedule of failure and repair time data on components and then infer the parameters ψ of the lifetime and repair time distributions.

Introduction 0000	Parametric Inference 0000000	Topological Inference 0000000000	Future o	References
Masked S	System Lifetime	Data (Repair)		

Traditionally, one may have full schedule of failure and repair time data on components and then infer the parameters ψ of the lifetime and repair time distributions.

Introduction 00000	Parametric Inference	Topological Inference 0000000000	Future o	References
Missing D	lata			

Clearly the missing data is what makes the inference hard. Tanner and Wong (1987) is a classic solution to this in a Bayesian framework assuming the missing data can be simulated. Iteratively simulate:

$$\left\langle \begin{array}{c} f_{Y \mid \Psi, T}(\mathbf{y}_{1}, \dots, \mathbf{y}_{m}, \mid \psi, \mathbf{t}) \\ \\ f_{\Psi \mid Y, T}(\psi \mid \mathbf{y}_{1}, \dots, \mathbf{y}_{m}, \mathbf{t}) \end{array} \right\rangle$$

Then, in the usual way the marginal samples from the Gibbs step are the required estimates:

$$f_{\Psi \mid T}(\psi \mid \mathbf{t}) = \int \cdots \int_{\mathbb{R}^+} f_{\Psi, Y \mid T}(\psi, \mathbf{y} \mid \mathbf{t}) \, d\mathbf{y}$$

Introduction 00000	Parametric Inference	Topological Inference 0000000000	Future o	References
Missing D	lata			

Clearly the missing data is what makes the inference hard. Tanner and Wong (1987) is a classic solution to this in a Bayesian framework assuming the missing data can be simulated. Iteratively simulate:

$$\left\langle \begin{array}{c} f_{Y \mid \Psi, T}(\mathbf{y}_{1}, \dots, \mathbf{y}_{n}, \mid \psi, \mathbf{t}) \\ \\ f_{\Psi \mid Y, T}(\psi \mid \mathbf{y}_{1}, \dots, \mathbf{y}_{m}, \mathbf{t}) \end{array} \right\rangle$$

Then, in the usual way the marginal samples from the Gibbs step are the required estimates:

$$f_{\Psi \mid T}(\psi \mid \mathbf{t}) = \int \cdots \int_{\mathbb{R}^+} f_{\Psi, Y \mid T}(\psi, \mathbf{y} \mid \mathbf{t}) \, d\mathbf{y}$$

Introduction Para	ametric Inference	Topological Inference	Future	References
00000 0000	0000	00000000000	0	
Simulating th	ne Missing Da	ıta		

Consider the system $-\begin{array}{c} & & \\ &$

 $\mathbf{t} = \{1.1, 4.2\}$

$$\psi = \psi_1$$

Introduction 00000	Parametric Inference	Topological Inference 0000000000	Future 0	References
Simulating	the Missing Da	ata		

$$\mathbf{t} = \{1.1, 4.2\}$$

Introduction	Parametric Inference	Topological Inference	Future	References
00000	000000	0000000000	0	
Simulating	the Missing D	ata		

 $\mathbf{t} = \{1.1, 4.2\}$

Introduction 00000	Parametric Inference	Topological Inference 0000000000	Future o	References
Simulating	the Missing D	ata		

 ${\bf t}=\{1.1,4.2\}$

Introduction 00000	Parametric Inference	Topological Inference 0000000000	Future o	References
Simulating	the Missing D	lata		

 ${\bf t}=\{1.1,4.2\}$

Introduction 00000	Parametric Inference	Topological Inference 0000000000	Future 0	References
Simulating	the Missing D	lata		

 ${\bf t}=\{1.1,4.2\}$

Introduction 00000	Parametric Inference	Topological Inference 0000000000	Future o	References
Simulating	the Missing D	ata		

 ${\bf t}=\{1.1,4.2\}$

Introduction 00000	Parametric Inference	Topological Inference 0000000000	Future o	References
Simulating	the Missing D	ata		

 ${\bf t}=\{1.1,4.2\}$

Introduction 00000	Parametric Inference $0 \bullet 00000$	Topological Inference 0000000000	Future 0	References
Simulating	the Missing Da	ata		

 $\mathbf{t} = \{1.1, 4.2\}$

Introduction 00000	Parametric Inference	Topological Inference 0000000000	Future 0	References
Missing D	Data			

$$\left(\begin{array}{c}f_{Y \mid \Psi, T}(\mathbf{y}_{1}, \dots, \mathbf{y}_{n}, \mid \psi, \mathbf{t})\\\\f_{\Psi \mid Y, T}(\psi \mid \mathbf{y}_{1}, \dots, \mathbf{y}_{m}, \mathbf{t})\end{array}\right)$$

What is the challenge?

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Parametric Inference 0000000	Topological Inference 0000000000	Future o	References
Sampling	Latent Failure	Times		
	$f_{Y\mid T}(y_{i1},\ldots,y_{in};\psi)$	t)		

$$\propto \sum_{j=1}^{n} \left[f_{Y|Y < t}(y_{i(1)}, \dots, y_{i(j-1)}; \psi) \right]$$

$$\times f_{Y|Y>t}(y_{i(j+1)},\ldots,y_{i(n)};\psi)$$

$$\times \mathbb{I}_{\{t\}}(y_{i(j)})$$

$$\times \binom{n-1}{j-1} F_Y(t;\psi)^j \overline{F}_Y(t;\psi)^{n-j+1} s_j \Big]$$

Introduction 00000	Parametric Inference $0000 \bullet 00$	Topological Inference 0000000000	Future o	References
Signature	based data aug	mentation		

1 With probability

$$\mathbb{P}(j) \propto \binom{n-1}{j-1} F_Y(t_i; \psi)^j \bar{F}_Y(t_i; \psi)^{n-j+1} s_j$$

it was the *j*th failure that caused system failure.

- **2** Having drawn a random j, sample
 - j-1 values, $y_{i1}, \ldots, y_{i(j-1)}$, from $F_{Y|Y < t_i}(\cdot; \psi)$, the distribution of the component lifetime conditional on failure before t_i
 - n-j values, $y_{i(j+1)}, \ldots, y_{in}$, from $F_{Y|Y>t_i}(\cdot; \psi)$, the distribution of the component lifetime conditional on failure after t_i

and set $y_{ij} = t_i$.

Introduction 00000	Parametric Inference	Topological Inference 0000000000	Future \circ	References
Prerequisi	tes			

This is a very general method. The prerequisites for use are,

- 1 The signature of the system;
- The ability to perform standard Bayesian inference with the full data;
- **3** The ability to sample from $F_{Y|Y < t_i}(\cdot; \psi)$ and $F_{Y|Y > t_i}(\cdot; \psi)$.

Introduction	Parametric Inference	Topological Inference	Future	References
00000	00000€0	0000000000	0	
Prerequis	sites			

This is a very general method. The prerequisites for use are,

1 The signature of the system;

Easy for systems that are not huge ReliabilityTheory R package (Aslett, 2012b)

 The ability to perform standard Bayesian inference with the full data;

Easy for common lifetime distributions

3 The ability to sample from $F_{Y|Y < t_i}(\cdot; \psi)$ and $F_{Y|Y > t_i}(\cdot; \psi)$.

Depends!

Introduction 00000	Parametric Inference 0000000	Topological Inference	Future 0	References
Unknown	Topologies			

A little 'blue skies' thinking ...

Introduction	Parametric Inference	Topological Inference	Future	References
00000	0000000	0000000000	0	

Uniqueness of the Signature

		Signature repetition							
Type	Order	Unique	2	3	4	5	6	7	Total
	2	2	0	0	0	0	0	0	2
Coherent	3	5	0	0	0	0	0	0	5
systems	4	14	3	0	0	0	0	0	20
	5	43	15	2	6	2	10	1	180
	2	2	0	0	0	0	0	0	2
Coherent	3	4	0	0	0	0	0	0	4
systems	4	11	0	0	0	0	0	0	11
/w graph	5	27	4	0	0	0	0	0	35

Introduction 00000	Parametric Inference 0000000	Topological Inference	Future o	References
Signature	& Topology			

Order 4 coherent systems with graph representation.

System Topology	Signature	System Topology	Signature
	(1, 0, 0, 0)	-63+63-	$\left(0, \frac{1}{3}, \frac{2}{3}, 0\right)$
	$\left(\tfrac{1}{2}, \tfrac{1}{2}, 0, 0\right)$		$\left(0, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)$
	$\left(\tfrac{1}{4}, \tfrac{7}{12}, \tfrac{1}{6}, 0\right)$	-63-0-	$\left(0, \frac{1}{6}, \frac{7}{12}, \frac{1}{4}\right)$
	$\left(\frac{1}{4},\frac{1}{4},\frac{1}{2},0\right)$		$\left(0,0,rac{1}{2},rac{1}{2} ight)$
-6-00	$\left(0, \frac{2}{3}, \frac{1}{3}, 0\right)$	<u>ا</u> م	(0, 0, 0, 1)
	$\left(0, \frac{1}{2}, \frac{1}{2}, 0\right)$		

Introduction 00000	Parametric Inference 0000000	Topological Inference	Future O	References
Jointly In	ferring the Top	ology		

$$\begin{pmatrix}
f_{Y \mid \Psi, T}(\mathbf{y}_{1}, \dots, \mathbf{y}_{m}, | \psi, \mathbf{t}) \\
f_{\Psi \mid Y, T}(\psi \mid \mathbf{y}_{1}, \dots, \mathbf{y}_{m}, \mathbf{t})
\end{pmatrix}$$

$\begin{array}{c} \text{Introduction} \\ \text{00000} \end{array}$	Parametric Inference	Topological Inference $000000000000000000000000000000000000$	Future 0	References
Jointly Inf	erring the Top	ology		

$$\left(\begin{array}{c}f_{Y\,|\,\Psi,T}(\mathbf{y}_{1\cdot},\ldots,\mathbf{y}_{m\cdot}\,|\,\psi,\mathbf{t},\mathbf{s})\\\\f_{\Psi\,|\,Y,T}(\psi\,|\,\mathbf{y}_{1\cdot},\ldots,\mathbf{y}_{m\cdot},\mathbf{t},\mathbf{s})\end{array}\right)$$

Introduction 00000	Parametric Inference 0000000	Topological Inference	Future 0	References
Jointly Inf	erring the Top	ology		

$$\left\langle \begin{array}{c} f_{Y \mid \Psi, T}(\mathbf{y}_{1}, \dots, \mathbf{y}_{m}, \mid \psi, \mathbf{t}, \mathbf{s}) \\ \\ f_{\Psi \mid Y, T}(\psi \mid \mathbf{y}_{1}, \dots, \mathbf{y}_{m}, \mathbf{t}, \mathbf{s}) \end{array} \right\rangle$$

Let \mathcal{M} be a collection of signatures, then naïvely we might presume random scan Gibbs between:

$$\begin{split} f_{Y|\mathcal{M},\Psi,T}(\mathbf{y}_{1.},\ldots,\mathbf{y}_{m} \mid \mathcal{M}_{j},\psi,\mathbf{t}) \\ f_{\Psi|\mathcal{M},Y,T}(\psi \mid \mathcal{M}_{j},\mathbf{y}_{1.},\ldots,\mathbf{y}_{m},\mathbf{t}) \\ f_{\mathcal{M}|\Psi,Y,T}(\mathcal{M}_{j} \mid \psi,\mathbf{y}_{1.},\ldots,\mathbf{y}_{m},\mathbf{t}) \end{split}$$

explores the posterior of:

$$f_{\mathcal{M},\Psi,Y\mid T}(\mathcal{M}_j,\psi,\mathbf{y}\mid\mathbf{t})$$

But, positivity & Harris ergodicity concerns

Introduction 00000	Parametric Inference 0000000	Topological Inference	Future o	References
Toy Exam	ple of Problem			

$$\mathcal{M} = \left\{ \begin{array}{c} -\underbrace{}_{(1,0,0)}, -\underbrace{}_{(\frac{1}{3},\frac{2}{3},0)}, \underbrace{}_{(0,-\frac{1}{3},\frac{1}{3})}, \underbrace{}_{(0,0,1)} \end{array} \right\}$$

Introduction 00000	Parametric Inference 0000000	Topological Inference	Future 0	References
Toy Exam	ple of Problem			

$$\mathcal{M} = \left\{ \begin{array}{c} -\underbrace{-0}_{(1,0,0)}, -\underbrace{-0}_{(\frac{1}{3},\frac{2}{3},0)}, \underbrace{-0}_{(0,-\frac{2}{3},\frac{1}{3})}, \underbrace{-0}_{(0,0,1)} \end{array} \right\}$$

Iteration 1

Let starting topology be $\mathcal{M}_1 = -\circ - \circ - \circ \longrightarrow \mathbf{s} = (1, 0, 0)$. Let ψ have sensible starting value.

Introduction 00000	Parametric Inference 0000000	Topological Inference	Future o	References
Toy Exam	ple of Problem			

$$\mathcal{M} = \left\{ \begin{array}{c} -\underbrace{-0}_{(1,0,0)}, -\underbrace{-0}_{(\frac{1}{3},\frac{2}{3},0)}^{\mathsf{O}}, \\ (\frac{1}{3},\frac{2}{3},0) & (0,\frac{2}{3},\frac{1}{3}) \\ (0,0,1) \end{array} \right\}$$

Iteration 1

Let starting topology be $\mathcal{M}_1 = -\circ - \circ - \circ - \Longrightarrow \mathbf{s} = (1, 0, 0)$. Let ψ have sensible starting value.

Then $f_{Y|\mathcal{M},\Psi,T}(\mathbf{y}_{1\cdot},\ldots,\mathbf{y}_{100\cdot}| - - - - -, \psi, \mathbf{t})$ will produce simulations st $t_i = y_{i(1:3)} \forall i$.

Introduction 00000	Parametric Inference 0000000	Topological Inference	Future 0	References
Toy Exam	ple of Problem			

$$\mathcal{M} = \left\{ \begin{array}{c} -\underbrace{-0}_{(1,0,0)}, -\underbrace{-0}_{(\frac{1}{3},\frac{2}{3},0)}^{\mathsf{O}}, \\ (\frac{1}{3},\frac{2}{3},0) & (0,\frac{2}{3},\frac{1}{3}) \\ (0,0,1) \end{array} \right\}$$

Iteration 1

Let starting topology be $\mathcal{M}_1 = -\circ - \circ - \circ - \Longrightarrow \mathbf{s} = (1, 0, 0)$. Let ψ have sensible starting value.

Then $f_{Y|\mathcal{M},\Psi,T}(\mathbf{y}_{1\cdot},\ldots,\mathbf{y}_{100\cdot}| - - - - -, \psi, \mathbf{t})$ will produce simulations st $t_i = y_{i(1:3)} \forall i$.

Thus, a move to \mathcal{M}_2 is harder. Moreover, moves to \mathcal{M}_3 or \mathcal{M}_4 are impossible.

Introduction 00000	Parametric Inference 0000000	Topological Inference	Future o	References
Toy Exam	ple of Problem			

$$\mathcal{M} = \left\{ \begin{array}{c} -\underbrace{-0}_{(1,0,0)}, -\underbrace{-0}_{0} \underbrace{-0}_{3}, +\underbrace{-0}_{0} \underbrace{-0}_{3}, +\underbrace{-0}_{0} \underbrace{-0}_{3}, \underbrace{+0}_{3} \\ (\frac{1}{3}, \frac{2}{3}, 0) & (0, \frac{2}{3}, \frac{1}{3}) & (0, 0, 1) \end{array} \right\}$$

Iteration 1

Let starting topology be $\mathcal{M}_1 = -\circ - \circ - \circ - \Longrightarrow \mathbf{s} = (1, 0, 0)$. Let ψ have sensible starting value.

Then $f_{Y|\mathcal{M},\Psi,T}(\mathbf{y}_{1\cdot},\ldots,\mathbf{y}_{100\cdot}| - - - - -, \psi, \mathbf{t})$ will produce simulations st $t_i = y_{i(1:3)} \forall i$.

Thus, a move to \mathcal{M}_2 is harder. Moreover, moves to \mathcal{M}_3 or \mathcal{M}_4 are impossible.

Assume a move to $\mathcal{M}_2 = - \mathcal{O}_{\mathcal{O}}^{\circ}$ is made though.

Introduction	Parametric Inference	Topological Inference	Future	References
00000	0000000	00000●00000	0	
Toy Exam	ple of Problem			

$$\mathcal{M} = \left\{ \begin{array}{c} -\underbrace{-0}_{(1,0,0)}, -\underbrace{-0}_{(\frac{1}{3},\frac{2}{3},0)}, \\ (\frac{1}{3},\frac{2}{3},0), (0,\frac{2}{3},\frac{1}{3}), (0,0,1) \end{array} \right\}$$

Iteration 2

Topology is $\mathcal{M}_2 = -\mathfrak{O} \cap \mathfrak{S} \implies \mathbf{s} = \left(\frac{1}{3}, \frac{2}{3}, 0\right).$

Introduction 00000	Parametric Inference 0000000	Topological Inference $00000 \bullet 00000$	Future o	References
Toy Examp	ple of Problem			

$$\mathcal{M} = \left\{ \begin{array}{c} -\underbrace{-0}_{(1,0,0)}, -\underbrace{-0}_{0} \underbrace{-0}_{3}, +\underbrace{-0}_{0} \underbrace{-0}_{3}, +\underbrace{-0}_{0} \underbrace{-0}_{3}, \underbrace{+0}_{3} \\ (\frac{1}{3}, \frac{2}{3}, 0) & (0, \frac{2}{3}, \frac{1}{3}) & (0, 0, 1) \end{array} \right\}$$

Iteration 2

Topology is $\mathcal{M}_2 = -\mathfrak{O} + \mathfrak{O} \Rightarrow \mathbf{s} = \left(\frac{1}{3}, \frac{2}{3}, 0\right).$

Now $f_{Y|\mathcal{M},\Psi,T}(\mathbf{y}_{1.},\ldots,\mathbf{y}_{100.}| \rightarrow \mathbf{t}_{O}^{O}$, ψ, \mathbf{t}) will produce simulations where t_i is either $y_{i(1:3)}$ or $y_{i(2:3)}$. However, very low probability that $t_i = y_{i(1:3)} \forall i$ or $t_i = y_{i(2:3)} \forall i$.

Introduction 00000	Parametric Inference 0000000	Topological Inference	Future o	References
Toy Exam	ple of Problem			

$$\mathcal{M} = \left\{ \begin{array}{c} -\underbrace{-0}_{(1,0,0)}, -\underbrace{-0}_{(\frac{1}{3},\frac{2}{3},0)}, +\underbrace{-0}_{(0,-\frac{1}{3},\frac{1}{3})}, +\underbrace{-0}_{(0,0,1)} \\ (\underbrace{1}_{3}, \underbrace{2}_{3}, 0), (\underbrace{0, \underbrace{2}_{3}, \frac{1}{3}}, \underbrace{1}_{(0,0,1)}, +\underbrace{-0}_{(0,-\frac{1}{3},\frac{1}{3})}, \\ (\underbrace{0, 0, 1}_{(0,0,1)}, \underbrace{0, 0, 1}_{(0,0,1)}, +\underbrace{-0}_{(0,-\frac{1}{3},\frac{1}{3})}, \\ (\underbrace{0, 0, 1}_{(0,0,1)}, \underbrace{0, 0, 1}_{(0,0,1)}, \underbrace{0, 0, 1}_{(0,0,1)}, \\ (\underbrace{0, 0, 0}_{(0,0,1)}, \underbrace{0, 0, 1}_{(0,0,1)}, \\ (\underbrace{0, 0, 0, 0}_{(0,0,1)}, \underbrace{0, 0, 0}_{(0,0,1)}, \underbrace{0,$$

Iteration 2

Topology is $\mathcal{M}_2 = -\mathfrak{O} + \mathfrak{O} \Rightarrow \mathbf{s} = \left(\frac{1}{3}, \frac{2}{3}, 0\right).$

Now $f_{Y|\mathcal{M},\Psi,T}(\mathbf{y}_{1\cdot},\ldots,\mathbf{y}_{100\cdot}| \multimap c_{O}^{-},\psi,\mathbf{t})$ will produce simulations where t_i is either $y_{i(1:3)}$ or $y_{i(2:3)}$. However, very low probability that $t_i = y_{i(1:3)} \forall i$ or $t_i = y_{i(2:3)} \forall i$.

$$\implies f_{\mathcal{M}|\Psi,Y,T}(\neg \leftarrow \mathsf{C} \mid \psi, \mathbf{y}_{1.}, \dots, \mathbf{y}_{100.}, \mathbf{t}) = 1 \text{ is likely.}$$

Introduction 00000	Parametric Inference 0000000	Topological Inference	Future o	References
Toy Exam	ple of Problem			

$$\mathcal{M} = \left\{ \begin{array}{c} -\underbrace{-0}_{(1,0,0)}, -\underbrace{-0}_{(\frac{1}{3},\frac{2}{3},0)}, +\underbrace{-0}_{(0,-\frac{1}{3},\frac{1}{3})}, +\underbrace{-0}_{(0,0,1)} \\ (\frac{1}{3},\frac{2}{3},0), (0,\frac{2}{3},\frac{1}{3}), (0,0,1) \end{array} \right\}$$

Iteration 2

Topology is $\mathcal{M}_2 = -\mathfrak{O} \mathcal{C}_{\mathcal{O}} \Longrightarrow \mathbf{s} = \left(\frac{1}{3}, \frac{2}{3}, 0\right).$

Now $f_{Y|\mathcal{M},\Psi,T}(\mathbf{y}_{1\cdot},\ldots,\mathbf{y}_{100\cdot}| \multimap c_{O}^{-},\psi,\mathbf{t})$ will produce simulations where t_i is either $y_{i(1:3)}$ or $y_{i(2:3)}$. However, very low probability that $t_i = y_{i(1:3)} \forall i$ or $t_i = y_{i(2:3)} \forall i$.

$$\Longrightarrow f_{\mathcal{M} \mid \Psi, Y, T}(\neg \frown \bigcirc \downarrow | \psi, \mathbf{y}_{1.}, \dots, \mathbf{y}_{100}, \mathbf{t}) = 1 \text{ is likely. Indeed:}$$

$$f_{\mathcal{M} \mid \Psi, Y, T}\left(\left\{\neg \multimap \multimap \neg, \neg \bigcirc \bigcirc \downarrow \right\} \middle| \psi, \mathbf{y}_{1.}, \dots, \mathbf{y}_{100}, \mathbf{t}\right) > 0$$

$$\Longrightarrow t_i = y_{i(1:3)} \forall i \text{ or } t_i = y_{i(2:3)} \forall i$$

Introduction 00000	Parametric Inference 0000000	Topological Inference	Future 0	References
The pro	blom con he arroide	d by using the feller	ring full	

The problem can be avoided by using the following full conditionals instead:

$$f_{\mathcal{M},Y|\Psi,T}(\mathcal{M}_{j},\mathbf{y}_{1},\ldots,\mathbf{y}_{m}|\psi,\mathbf{t})$$

$$f_{\Psi|\mathcal{M},Y,T}(\psi|\mathcal{M}_{j},\mathbf{y}_{1},\ldots,\mathbf{y}_{m},\mathbf{t})$$

since the block marginals are concordant with positivity and ensure Harris ergodicity. Sampling the former sequentially:

$$\begin{split} & f_{\mathcal{M} \mid \Psi, T}(\mathcal{M}_j \mid \psi, \mathbf{t}) \\ & f_{Y \mid \mathcal{M}, \Psi, T}(\mathbf{y}_{1}, \dots, \mathbf{y}_{m} \mid \mathcal{M}_j, \psi, \mathbf{t}) \end{split}$$

The latter is unchanged from before. For the former:

$$f_{\mathcal{M} | \Psi, T}(\mathcal{M}_j | \psi, \mathbf{t}) \propto \left\{ \prod_{i=1}^m f_{T | \Psi, \mathcal{M}}(t_i | \psi, \mathcal{M}_j) \right\} f_{\mathcal{M}}(\mathcal{M}_j)$$

Trinity College Dublin

Introduction 00000	Parametric Inference 0000000	Topological Inference	Future 0	References
Exchange	eable Systems			

The i.i.d. systems assumption easily relaxed to exchangeability.

Phase-type Component Lifetimes

Extreme generality of the solution allows wide variety of component lifetime distributions. Solutions to the prerequisites have been derived for Phase-type distributed components.

May interpret as:

• Repairable redundant subsystems;

• Theoretically dense in function space of all positively ⁶/₆ supported continuous distributions.

Introduction 00000	Parametric Inference 0000000	Topological Inference 0000000000	\mathbf{Future}	References
Future W	ork			

A couple of the many important avenues to be pursued:

- Many partial information scenarios between full information and the extreme presented here.
- There can be many lifetime forms, but with the restrictive assumption of the same components survival signature (Coolen and Coolen-Maturi, 2012) an avenue to pursue (see 14:30 tomorrow).

Introduction 00000	Parametric Inference 0000000	Topological Inference 0000000000	Future \circ	References
Reference	s I			

- Aslett, L. J. M. (2012a), MCMC for Inference on Phase-type and Masked System Lifetime Models, PhD thesis, Trinity College Dublin.
- Aslett, L. J. M. (2012b), ReliabilityTheory: Tools for structural reliability analysis. R package version 0.1.0.
- Birnbaum, Z. W., Esary, J. D. and Saunders, S. C. (1961), 'Multi-component systems and structures and their reliability', *Technometrics* 3(1), 55-77.
- Coolen, F. P. and Coolen-Maturi, T. (2012), Generalizing the signature to systems with multiple types of components, in 'Complex Systems and Dependability', Springer, pp. 115–130.
- Gåsemyr, J. and Natvig, B. (2001), 'Bayesian inference based on partial monitoring of components with applications to preventative system maintenance', *Naval Research Logistics* 48(7), 551–577.
- Kuo, L. and Yang, T. Y. (2000), 'Bayesian reliability modeling for masked system lifetime data', Statistics & Probability Letters 47(3), 229–241.
- Ng, H. K. T., Navarro, J. and Balakrishnan, N. (2012), 'Parametric inference from system lifetime data under a proportional hazard rate model', *Metrika* 75(3), 367–388.
- Reiser, B., Guttman, I., Lin, D. K. J., Guess, F. M. and Usher, J. S. (1995), 'Bayesian inference for masked system lifetime data', *Journal of the Royal Statistical Society, Series C* 44(1), 79-90.
- Samaniego, F. J. (1985), 'On closure of the IFR class under formation of coherent systems', IEEE Transactions on Reliability R-34(1), 69-72.
- Tanner, M. A. and Wong, W. H. (1987), 'The calculation of posterior distributions by data augmentation', Journal of the American Statistical Association 82(398), 528-540.

