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Introduction
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Structural Reliability Theory

o Interest lies in the reliability of ‘systems’ composed of
numerous ‘components’.
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Introduction
[ Jelelele}

Structural Reliability Theory

o Interest lies in the reliability of ‘systems’ composed of
numerous ‘components’.

O—@
T2 2 100
Q—0O
o Lifetime of the system, T, is determined by:

o the lifetime of the components, Y; ~ Fy(-;1;)
o the structure of the system.
o the possible presence of a repair process.

via either the structure function or signature.
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Structural Reliability Theory

o Interest lies in the reliability of ‘systems’ composed of
numerous ‘components’.
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« Lifetime of the system, T, is determined by:
« the lifetime of the components, Y; ~ Fy(-;1;)

 the structure of the system.
« the possible presence of a repair process.

via either the structure function or signature.
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Structure Functions & Signatures

The structure function (Birnbaum et al., 1961) is a mapping
©(-) : {0,1}"™ — {0, 1} which determines operation of the system
given the state of the n components.
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Structure Functions & Signatures

The structure function (Birnbaum et al., 1961) is a mapping
©(-) : {0,1}"™ — {0, 1} which determines operation of the system
given the state of the n components.

The signature (Samaniego, 1985) is less widely used, but in
some ways more elegant.

Definition (Signature)

The signature of a system is the n-dimensional probability
vector s = (s1,. .., S,) with elements:

where T is the failure time of the system and Y., is the ith
order statistic of the n component failure times.
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Structure Functions & Signatures

Definition (Signature)

The signature of a system is the n-dimensional probability
vector s = (s1,. .., S,) with elements:

s =P(T= Yp)

where T is the failure time of the system and Y., is the ith
order statistic of the n component failure times.

e.g.
— s=(0,%,3) and
B Trinity SO(XI) X27 X3) =1- (1 - Xl)(l - X2X3)
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Masked System Lifetime Data

Traditionally, one may have failure time data on components
and then infer the parameters 1 of the lifetime distribution.
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Masked System Lifetime Data

Traditionally, one may have failure time data on components
and then infer the parameters 1 of the lifetime distribution.

Y1 = 2.4

Y2 >3.1  y3=3.1

Straight-forward Bayesian inference:

Fu v (1) o { ) Fiwsi ) (1= Fr(ups ) | fu ()
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Masked System Lifetime Data

Traditionally, one may have failure time data on components
and then infer the parameters 1 of the lifetime distribution.

t=1y3=1y23 =231
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Masked System Lifetime Data

Traditionally, one may have failure time data on components
and then infer the parameters 1 of the lifetime distribution.

resTTsT s s s s smsss 1
| |
| |
o T
| |
| |
- - - — - —— - -

Masked system lifetime data means only the failure time of the
system as a whole is known, not the component failure times or
indeed which components had failed.
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The literature on inference for masked system lifetime data is
extensive, but:

« heavily focused on specific structures (e.g. series/competing
risk systems, see Reiser et al. (1995) or Kuo and Yang
(2000))

« or focused on specific lifetime distributions (e.g.
Exponential, see Gasemyr and Natvig (2001))

« or does not focus on inferring the parameters of the model
(e.g. infer hazard, see Ng et al. (2012)).

Why?
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The literature on inference for masked system lifetime data is
extensive, but:

« heavily focused on specific structures (e.g. series/competing
risk systems, see Reiser et al. (1995) or Kuo and Yang
(2000))

« or focused on specific lifetime distributions (e.g.
Exponential, see Gasemyr and Natvig (2001))

« or does not focus on inferring the parameters of the model
(e.g. infer hazard, see Ng et al. (2012)).

Why? Likelihood can be complex:

BEIY Trinity - H %[1 — 1= Fr()}{1 - FYB(t)}]Fyl(t)
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Masked System Lifetime Data (Repair)

Traditionally, one may have full schedule of failure and repair
time data on components and then infer the parameters ¢ of
the lifetime and repair time distributions.

.
¢{t} -Ega-

—_—> ¢ System Failed
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Masked System Lifetime Data (Repair)

Traditionally, one may have full schedule of failure and repair
time data on components and then infer the parameters ¢ of
the lifetime and repair time distributions.

oot —>
L%+

¢{t} -Ega-
T2t

T i
% %t oot X

—_—> ¢ System Failed
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Parametric Inference
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Missing Data

Clearly the missing data is what makes the inference hard.
Tanner and Wong (1987) is a classic solution to this in a
Bayesian framework assuming the missing data can be
simulated. Iteratively simulate:

fY|‘1!,T(y1~7" s Yme ’wvt)

)

Then, in the usual way the marginal samples from the Gibbs
step are the required estimates:

f\I/\Y,T(¢|Y1-,~ 7}’m,t)

f\IJ|T(QzZ)’t):/"'/R+f\II,Y|T(¢vY|t)dy
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Parametric Inference
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Missing Data

Clearly the missing data is what makes the inference hard.
Tanner and Wong (1987) is a classic solution to this in a
Bayesian framework assuming the missing data can be
simulated. Iteratively simulate:

fY|‘1!Ty17" )?’wv

)

fovr@lyr,. /ym-,t)

Then, in the usual way the marginal samples from the Gibbs
step are the required estimates:

B, Fo 2yt = / / foni2ldy 10 dy ~Sfi-
“ Du?m Sl
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Parametric Inference
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Simulating the Missing Data

Consider the system -QS;F from the introduction, with
observed system failure times:

t={1.1,4.2}

Need realisations concordant with each observation:
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Simulating the Missing Data

Consider the system -QS;F from the introduction, with
observed system failure times:

t={1.1,4.2}

Need realisations concordant with each observation:
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Simulating the Missing Data

Consider the system -QS;F from the introduction, with
observed system failure times:

t={1.1,4.2}

Need realisations concordant with each observation:

tp =1.1 0.9

Y =1 > —
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«,,;_w Trinity ;fl

2.7 1.1

Bil College
&’ Dublin


http://www.tcd.ie/
http://www.sfi.ie/

Parametric Inference
0Oe00000

Simulating the Missing Data

Consider the system -QS;F from the introduction, with
observed system failure times:

t={1.1,4.2}

Need realisations concordant with each observation:

=11 09
V=1 —> —

To2et
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Simulating the Missing Data

Consider the system -QS;F from the introduction, with
observed system failure times:

t={1.1,4.2}

Need realisations concordant with each observation:

my— {0.9,2.7,1.1}
V=t —> m_
To2ot
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Simulating the Missing Data

Consider the system -QS;F from the introduction, with
observed system failure times:

t={1.1,4.2}

Need realisations concordant with each observation:

S e
to =4.2 4.2
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3.2 1.3
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Simulating the Missing Data

Consider the system -QS;F from the introduction, with
observed system failure times:

t={1.1,4.2}

Need realisations concordant with each observation:

my =1{0.9,2.7,1.1,3.2,4.2,1.3}
vmn = L%F
to =4.2 4.2

—
3.2 1.3
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Simulating the Missing Data

Consider the system -QS;F from the introduction, with
observed system failure times:

t={1.1,4.2}

Need realisations concordant with each observation:

my =1{0.9,2.7,1.1,3.2,4.2,1.3}
von = L%}
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Simulating the Missing Data

Consider the system -QS;F from the introduction, with
observed system failure times:

t={1.1,4.2}

Need realisations concordant with each observation:

y=1{0.9,2.7,1.1,3.2,4.2,1.3}
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Missing Data

fY|\I/T Yi,--- Y? [, t)

( qu\Y,T(WY1-,-/)'m~at)

What is the challenge?

)

1o Pt vt -
b=t = L O P ) =
T2 PUsaH vt =
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Sampling Latent Failure Times

fy| (Yirs -5 Y3 ¥ [ )

x Z [fy| Y<t(yi(1)7 <o Yi(j—1)s ¥)

j=1
X fY\ Y>t(yi(j+1)7 cee yi(n);lﬁ)

x Ly (W)

< (07 )) vty Pt
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Signature based data augmentation

@® With probability

P(j) oc (j B 1) Fy(ti ) Fy(t; )" 7 s

it was the jth failure that caused system failure.
® Having drawn a random j, sample

o j—1values, y;,..., Y1), from Fy, v<i;(-;), the
distribution of the component lifetime conditional on failure

before t;

o n—jvalues, Y;ji1ys-- -, Y, from Fy| v>i,(+31), the
distribution of the component lifetime conditional on failure
after ¢;

and set y; = ;.
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Parametric Inference
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Prerequisites

This is a very general method. The prerequisites for use are,

® The signature of the system;

® The ability to perform standard Bayesian inference with
the full data;

® The ability to sample from F'y|y.(-;%) and
Fy|yst,(-39).
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Parametric Inference
0000000

Prerequisites

This is a very general method. The prerequisites for use are,

® The signature of the system;
Easy for systems that are not huge
ReliabilityTheory R package (Aslett, 2012b)
® The ability to perform standard Bayesian inference with
the full data;
FEasy for common lifetime distributions

® The ability to sample from Fy|y.(-;%) and

FY| Y>ti( ") Q;[))
Depends!
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Canonical Exponential Component Lifetime Example
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Topological Inference
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Unknown Topologies

A little ‘blue skies’ thinking ...

reEesTsEsEsEsEsEsEsEss- 1
| |
| |
T
| . |
| |

t=yr =yr3 =31
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Uniqueness of the Signature

Signature repetition

Type Order | Unique ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 6 ‘ 7 | Total

2 2 0|0]0[0] 01O 2
Coherent 3 5 0]0|0J0O|O0O]|O 5
systems 4 14 310100010 20

5 43 1512162101 180

2 2 0O0|0jO0O[0] 01O 2
Coherent 3 4 0|0]0[0] 01O 4
systems 4 11 0O [0j]0]O]O0]O 11
/w graph 5 27 4 10(0]0] 0|0 35
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Signature & Topology

Order 4 coherent systems with graph representation.

System . System .
Topology Signature Topology Signature
—0—0—0—0— (1,0,0,0) {oHST (0,%%70)

—o—ofgF (3:5,0,0) oot (0,34 1)

% (LHa0) | gt (0hG Y

~fh  GhR0 | f5d ok

253 2 1
(0>§7§a0) % (0?07071)
g, (0,3,3,0)
Téll:o)nlli%}%ln

/;\gfl =
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Jointly Inferring the Topology

fY|\I/,T(y1-7' - Ym- |1/}7t)

)

f\I/|Y,T(¢’y1~7"'7Ym~7t)
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Jointly Inferring the Topology

fY|\Il,T(y1~7"' » Ym- [¢,t75)

)

f\I/|Y,T(¢’y1~7"'7Ym~7ta§()
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Topological Inference
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Jointly Inferring the Topology

fY|\Il,T(y1~7"' » Ym- [¢,t75)

f\I/|Y,T(1/} ’y1~7 oo 7Ym~7ta§()
Let M be a collection of signatures, then naively we might
presume random scan Gibbs between:
fY|M7‘II7T(YI~7 Y | MJ7 2[)7 t)
f\II|M,Y,T(¢ | Mjayl-a R ay'rn~7t)
fM | \II,Y,T(Mj | ¢7YI-’ s 7Ym-7t)

explores the posterior of:

fM,\I!,Y| T(Mj7 Y,y |t)

R Trinity =L
:”‘ College e e . . . . Sfl
&/ Dublin But, positivity € Harris ergodicity concerns
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Toy Example of Problem

Assume t comprises 100 masked system lifetimes and M is all
order 3 coherent systems with graph representation.

M={ e (1,0.0) @%}

12
(3’3’ 73’3 (0,0,1)
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Toy Example of Problem

Assume t comprises 100 masked system lifetimes and M is all
order 3 coherent systems with graph representation.

M={ e (1,0.0) @%}

(3:3.00 (0,3.3) (0,0,1)
Iteration 1
Let starting topology be M; =—o0—0—0— = s =(1,0,0).
Let v have sensible starting value.

9. iTrmlty
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Topological Inference
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Toy Example of Problem

Assume t comprises 100 masked system lifetimes and M is all
order 3 coherent systems with graph representation.

M={ e (1,0.0) @%}

(3:3.00 (0,3.3) (0,0,1)
Iteration 1
Let starting topology be M; =—o0—0—0— = s =(1,0,0).
Let v have sensible starting value.

Then fy' M,\I’,T(y].’ oo 7y].00 | _0_0_0_7 w, t) Wlll pI‘Odllce
simulations st t; = y;.3) V.
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Toy Example of Problem

Assume t comprises 100 masked system lifetimes and M is all
order 3 coherent systems with graph representation.

M={ e (1,0.0) @%}

(3:3.00 (0,3.3) (0,0,1)
Iteration 1

Let starting topology be M; =—o0—0—0— = s =(1,0,0).
Let v have sensible starting value.

Then fy' M,\I’,T(yl’ oo ,leO | _0_0_0_7 w, t) Wlll pI‘Odllce
simulations st t; = y;.3) V.

Thus, a move to Mo is harder. Moreover, moves to Mg or My
are impossible.
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Toy Example of Problem

Assume t comprises 100 masked system lifetimes and M is all
order 3 coherent systems with graph representation.

M={ e (1,0.0) @%}

(3:3.00 (0,3.3) (0,0,1)
Iteration 1

Let starting topology be M; =—o0—0—0— = s =(1,0,0).
Let v have sensible starting value.

Then fy' M,\I’,T(yl’ oo ,leO | _0_0_0_7 w, t) Wlll pI‘Odllce
simulations st t; = y;.3) V.

Thus, a move to Mo is harder. Moreover, moves to Mg or My
are impossible.

g Assume a move to Mo ——0{8} is made though. )
o Gl sfi-
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Toy Example of Problem

Assume t comprises 100 masked system lifetimes and M is all
order 3 coherent systems with graph representation.

M={~oro0=, o3k L%+, o} |
(1,0,0) 12 2 1
(3’3’ 07373 (0,0,1)
Iteration 2
Topology is My =—o{3F = s = (3, 2,0).

9. \v Trinity V-
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Toy Example of Problem

Assume t comprises 100 masked system lifetimes and M is all
order 3 coherent systems with graph representation.

M={ e (1,0.0) @%}

(:1%’3’ 73’3 (0,0,1)
Iteration 2
Topology is Mg =—0{J} = s = (};7 370)

Now fY|M T, (Y15 ¥100 | —0{8} ¥, t) will produce
simulations where #; is either Yi(1:3) OF Yi(2:3): However, very low

probability that ; = y;q.3) Vior {; = yo.4) Vi

9. \v Trinity V-
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Toy Example of Problem

Assume t comprises 100 masked system lifetimes and M is all
order 3 coherent systems with graph representation.

M={ e (1,0.0) @%}

(ilwg’ 73’3 (0,0,1)
Iteration 2
Topology is Mg =—0{J} = s = (é7 ;2:,70)

Now fY|M T, (Y15 ¥100 | —0{8} ¥, t) will produce
simulations where #; is either Yi(1:3) OF Yi(2:3): However, very low

probability that ; = y;q.3) Vior {; = yo.4) Vi

= fumjw, v, 7(—oLoF ¥, Y1, - -5 V100, t) = 1 is likely.

9. \v Trinity V-
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Toy Example of Problem

Assume t comprises 100 masked system lifetimes and M is all
order 3 coherent systems with graph representation.

M={ e (1,0.0) @%}

(ilwg’ 73’3 (0,0,1)
Iteration 2
Topology is Mg =—0{J} = s = (é7 ;2:,70)

Now fY|M T, (Y15 ¥100 | —0{8} ¥, t) will produce
simulations where #; is either Yi(1:3) OF Yi(2:3): However, very low

probability that ; = y;q.3) Vior {; = yo.4) Vi

== fM|\If,Y,T(_O{8} |, Y1,y Y100, t) = 1 is likely. Indeed:

—— fM|\I/7Y,T({_O_O_O_a-Sgg—|_}‘¢7y1~7'--7y100-7t) >0
College i
=z Dublin = t;= yi(1:3) Y1 or t; = yi(2:3) Y1 Sﬁ
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The problem can be avoided by using the following full
conditionals instead:

fM,Y|\II,T(Mj7y1'7 s Yme ’w7t>
f‘l/|./\/l,Y,T(w|Mj7y1~7 cee 7ym-7t)

since the block marginals are concordant with positivity and
ensure Harris ergodicity. Sampling the former sequentially:

Faaw, 7 (M9, )
fY|M,\If,T(y1-7 e Yme | Mj7 1;Z)7 t)
The latter is unchanged from before. For the former:
rmw, r(Mjl 9, t) o {HfT\IJ,M(ti|1/}an)} (M)
=1

EEX] Trinity o&
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Topological Inference
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Canonical Exponential Component Lifetime Example
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Topological Inference
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Phase-type Component Lifetime Example
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Topological Inference
L 1)

Exchangeable Systems

The i.i.d. systems assumption easily relaxed to exchangeability.
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Extreme generality of the solution allows wide variety of
component lifetime distributions. Solutions to the prerequisites
have been derived for Phase-type distributed components.
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May interpret as:
» Repairable redundant subsystems;
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Future
[

Future Work

A couple of the many important avenues to be pursued:

o Many partial information scenarios between full
information and the extreme presented here.

e There can be many lifetime forms, but with the restrictive
assumption of the same components — survival signature
(Coolen and Coolen-Maturi, 2012) an avenue to pursue (see
14:30 tomorrow).
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