Parametric and Topological Inference for Masked System Lifetime Data

Louis J. M. Aslett and Simon P. Wilson

Trinity College Dublin

 $27^{\rm th}$ November 2012

Introduction	Parametric Inference	References
•••		
<u></u>		

• Interest lies in the reliability of 'systems' composed of numerous 'components'.

Introduction $\bullet 00$	Parametric Infere 0000000	nce Topological Inference 000000	References
C 1 1		ור	

• Interest lies in the reliability of 'systems' composed of numerous 'components'.

- Lifetime of the system, T, is determined by:
 - the lifetime of the components, $Y_i \sim F_Y(\cdot; \psi_i)$
 - the structure of the system.

via either the structure function or signature.

Introduction $\bullet 00$	Parametric Infe 0000000	rence Topological 000000	Inference References
C	1 10 10 1010	T D1	

• Interest lies in the reliability of 'systems' composed of numerous 'components'.

- Lifetime of the system, T, is determined by:
 - the lifetime of the components, $Y_i \sim F_Y(\cdot; \psi_i)$
 - the structure of the system.

via either the structure function or signature.

Introduction	Parametric Inference	Topological Inference	References
•00			
	1 10 11 1110 1111		

• Interest lies in the reliability of 'systems' composed of numerous 'components'.

- Lifetime of the system, *T*, is determined by:
 - the lifetime of the components, $Y_i \sim F_Y(\cdot; \psi_i)$
 - the structure of the system.

via either the structure function or signature.

Introduction $0 \bullet 0$	Parametric Inference	Topological Inference 000000	References
Masked Syste	em Lifetime Data		

Traditionally, one may have failure time data on components and then infer the parameters ψ of the lifetime distribution.

 Introduction
 Parametric Inference
 Topological Inference
 References

 Solo
 System Lifetime Data
 References
 References

Traditionally, one may have failure time data on components and then infer the parameters ψ of the lifetime distribution.

Trivial Bayesian inference:

$$f_{\Psi\mid Y}(\psi\mid \mathbf{y}) \propto \left\{f_Y(y_1;\psi) f_Y(y_3;\psi) \left(1-F_Y(y_2;\psi)\right)\right\} f_{\Psi}(\psi)$$

Introduction	Parametric Inference		References
000	0000000	000000	
Masked Sy	vstem Lifetime Da [*]	ta	

Traditionally, one may have failure time data on components and then infer the parameters ψ of the lifetime distribution.

Introduction $0 \bullet 0$	Parametric Inference 0000000	Topological Inference 000000	References
Masked Syste	em Lifetime Data		

Traditionally, one may have failure time data on components and then infer the parameters ψ of the lifetime distribution.

Masked system lifetime data means only the failure time of the system as a whole is known, not the component failure times or indeed which components had failed.

The literature on inference for masked system lifetime data is extensive, but:

- heavily focused on specific structures (e.g. series/competing risk systems, see Reiser *et al.* (1995) or Kuo and Yang (2000))
- or focused on specific lifetime distributions (e.g. Exponential, see Gåsemyr and Natvig (2001))
- or does not focus on inferring the parameters of the model (e.g. infer hazard, see Ng *et al.* (2012)).

Why?

The literature on inference for masked system lifetime data is extensive, but:

- heavily focused on specific structures (e.g. series/competing risk systems, see Reiser *et al.* (1995) or Kuo and Yang (2000))
- or focused on specific lifetime distributions (e.g. Exponential, see Gåsemyr and Natvig (2001))
- or does not focus on inferring the parameters of the model (e.g. infer hazard, see Ng *et al.* (2012)).

Why? Nasty likelihood!

init Colle

$$L(\psi; \mathbf{y}) = \prod_{i=1}^{m} \left. \frac{\partial}{\partial t} F_T(t; \psi) \right|_{t=t_i}$$
$$= \prod_{i=1}^{m} \left. \frac{\partial}{\partial t} \left[1 - \left\{ 1 - F_{Y_2}(t) \right\} \left\{ 1 - F_{Y_3}(t) \right\} \right] F_{Y_1}(t) \right|_{t=t_i}$$

Introduction	Parametric Inference	Topological Inference	References
000	•000000	000000	
Missing Data			

The missing data is what makes the inference hard. Tanner and Wong (1987) is a classic solution to this in a Bayesian framework assuming the missing data can be simulated.

Simulate missing data given parameter

$$\begin{pmatrix}
f_{Y \mid \Psi, T}(\mathbf{y}_{1}, \dots, \mathbf{y}_{m} \mid \psi, \mathbf{t}) \\
f_{\Psi \mid Y, T}(\psi \mid \mathbf{y}_{1}, \dots, \mathbf{y}_{m}, \mathbf{t})
\end{pmatrix}$$

Simulate parameter given missing data

Introduction 000	Parametric Inference	Topological Inference 000000	References
Missing Data			

The missing data is what makes the inference hard. Tanner and Wong (1987) is a classic solution to this in a Bayesian framework assuming the missing data can be simulated.

Simulate missing data given parameter

$$\begin{pmatrix}
f_{Y \mid \Psi, T}(\mathbf{y}_{1}, \dots, \mathbf{y}_{n}, | \psi, \mathbf{t}) \\
f_{\Psi \mid Y, T}(\psi \mid \mathbf{y}_{1}, \dots, \mathbf{y}_{m}, \mathbf{t})
\end{pmatrix}$$
Simulate parameter given missing data

Then, in the usual way the marginal samples from the second Gibbs step can be used for inference about ψ .

Introduction	Parametric Inference	Topological Inference	References
000	o●ooooo	000000	
C	C: masternad		

System Signatures

The signature (Samaniego, 1985) is less widely used than the structure function, but in some ways more elegant.

Definition (Signature)

The signature of a system is the *n*-dimensional probability vector $\mathbf{s} = (s_1, \ldots, s_n)$ with elements:

$$s_i = \mathbb{P}(T = Y_{i:n})$$

where T is the failure time of the system and $Y_{i:n}$ is the *i*th order statistic of the *n* component failure times.

Introduction	Parametric Inference	Topological Inference	References
000	o●ooooo	000000	
C	C: masternad		

System Signatures

The signature (Samaniego, 1985) is less widely used than the structure function, but in some ways more elegant.

Definition (Signature)

The signature of a system is the *n*-dimensional probability vector $\mathbf{s} = (s_1, \ldots, s_n)$ with elements:

$$s_i = \mathbb{P}(T = Y_{i:n})$$

where T is the failure time of the system and $Y_{i:n}$ is the *i*th order statistic of the *n* component failure times.

e.g.

Introduction 000	Parametric Inference 00000000	Topological Inference 000000	References

Sampling Latent Failure Times

It can be shown:

$$f_{Y|T}(y_{i1}, \dots, y_{in}; \psi \mid t)$$

$$\propto \sum_{j=1}^{n} \left[f_{Y|Y < t}(y_{i(1)}, \dots, y_{i(j-1)}; \psi) \right]$$

$$\times f_{Y|Y>t}(y_{i(j+1)},\ldots,y_{i(n)};\psi)$$

$$\times \mathbb{I}_{\{t\}}(y_{i(j)})$$

$$\times \binom{n-1}{j-1} F_Y(t;\psi)^j \bar{F}_Y(t;\psi)^{n-j+1} s_j \Big]$$

Parametric Inference	Topological Inference	Reference
0000000		

Signature based data augmentation

1 With probability

$$\mathbb{P}(j) \propto \binom{n-1}{j-1} F_Y(t_i; \psi)^j \bar{F}_Y(t_i; \psi)^{n-j+1} s_j$$

it was the *j*th failure that caused system failure.

2 Having drawn a random j, sample

- j-1 values, $y_{i1}, \ldots, y_{i(j-1)}$, from $F_{Y|Y < t_i}(\cdot; \psi)$, the distribution of the component lifetime conditional on failure before t_i
- n-j values, $y_{i(j+1)}, \ldots, y_{in}$, from $F_{Y|Y>t_i}(\cdot; \psi)$, the distribution of the component lifetime conditional on failure after t_i

and set $y_{ij} = t_i$.

	Parametric Inference	Topological Inference	References
	0000000		
D • • •			
Prerequisites			

This is a very general method. The prerequisites for use are,

- 1 The signature of the system;
- The ability to perform standard Bayesian inference with the full data;
- **3** The ability to sample from $F_{Y|Y < t_i}(\cdot; \psi)$ and $F_{Y|Y > t_i}(\cdot; \psi)$.

Introduction 000	Parametric Inference	Topological Inference 000000	References
Prerequisites			

This is a very general method. The prerequisites for use are,

1 The signature of the system;

Easy for systems that are not huge

 The ability to perform standard Bayesian inference with the full data;

Easy for common lifetime distributions

3 The ability to sample from $F_{Y|Y < t_i}(\cdot; \psi)$ and $F_{Y|Y > t_i}(\cdot; \psi)$. Depends!

Introduction Parametric Inference Topological Inference 000 000000 000000 000000

Canonical Exponential Component Lifetime Example

References

Parametric Inference 000000● Topological Inference 000000

Exchangeable Systems

Introduction 000	Parametric Inference	Topological Inference •00000	References
Unknown T	opologies		

Topological Inference 0●0000

Uniqueness of the Signature

		Signature repetition							
Type	Order	Unique	2	3	4	5	6	7	Total
	2	2	0	0	0	0	0	0	2
Coherent	3	5	0	0	0	0	0	0	5
systems	4	14	3	0	0	0	0	0	20
	5	43	15	2	6	2	10	1	180
	2	2	0	0	0	0	0	0	2
Coherent	3	4	0	0	0	0	0	0	4
systems	4	11	0	0	0	0	0	0	11
/w graph	5	27	4	0	0	0	0	0	35

Introduction	Parametric Inference	Topological Inference	References
000	0000000	00•000	
Signature & '	Topology		

Order 4 coherent systems with graph representation.

System Topology	Signature	System Topology	Signature
	(1, 0, 0, 0)	-CHC-	$\left(0, \frac{1}{3}, \frac{2}{3}, 0\right)$
	$\left(\tfrac{1}{2}, \tfrac{1}{2}, 0, 0\right)$		$\left(0, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)$
	$\left(\tfrac{1}{4}, \tfrac{7}{12}, \tfrac{1}{6}, 0\right)$	-63-0-	$\left(0, \frac{1}{6}, \frac{7}{12}, \frac{1}{4}\right)$
	$\left(\frac{1}{4},\frac{1}{4},\frac{1}{2},0\right)$		$\left(0,0,\frac{1}{2},\frac{1}{2}\right)$
-6-00	$\left(0, \frac{2}{3}, \frac{1}{3}, 0\right)$	jêj	(0, 0, 0, 1)
	$\left(0, \frac{1}{2}, \frac{1}{2}, 0\right)$		

Introduction 000	Parametric Inference 0000000	Topological Inference 000000	References

Jointly Inferring the Topology

Omitting some rather technical MCMC details, if one uses block marginals:

$$f_{\mathcal{M},Y|\Psi,T}(\mathcal{M}_j,\mathbf{y}_{1\cdot},\ldots,\mathbf{y}_{m\cdot}|\psi,\mathbf{t})$$

$$f_{\Psi|\mathcal{M},Y,T}(\psi|\mathcal{M}_j,\mathbf{y}_{1\cdot},\ldots,\mathbf{y}_{m\cdot},\mathbf{t})$$

by sampling the former sequentially:

$$\begin{aligned} & f_{\mathcal{M} \mid \Psi, T}(\mathcal{M}_j \mid \psi, \mathbf{t}) \\ & f_{Y \mid \mathcal{M}, \Psi, T}(\mathbf{y}_{1.}, \dots, \mathbf{y}_{m.} \mid \mathcal{M}_j, \psi, \mathbf{t}) \end{aligned}$$

then the topology \mathcal{M}_j can be jointly inferred with the parameters.

Introduction	Parametric Inference	Topological Inference	References
000	0000000	000000	
References I			

- Aslett, L. J. M. (2011), PhaseType: Inference for Phase-type Distributions. R package version 0.1.3.
- Aslett, L. J. M. (2012), ReliabilityTheory: Tools for structural reliability analysis. R package version 0.1.0.
- Birnbaum, Z. W., Esary, J. D. and Saunders, S. C. (1961), 'Multi-component systems and structures and their reliability', *Technometrics* 3(1), 55–77.
- Gåsemyr, J. and Natvig, B. (2001), 'Bayesian inference based on partial monitoring of components with applications to preventative system maintenance', Naval Research Logistics 48(7), 551–577.
- Kuo, L. and Yang, T. Y. (2000), 'Bayesian reliability modeling for masked system lifetime data', Statistics & Probability Letters 47(3), 229-241.
- Ng, H. K. T., Navarro, J. and Balakrishnan, N. (2012), 'Parametric inference from system lifetime data under a proportional hazard rate model', *Metrika* 75(3), 367–388.
- Reiser, B., Guttman, I., Lin, D. K. J., Guess, F. M. and Usher, J. S. (1995), 'Bayesian inference for masked system lifetime data', *Journal of the Royal Statistical Society, Series C* 44(1), 79–90.
- Samaniego, F. J. (1985), 'On closure of the IFR class under formation of coherent systems', IEEE Transactions on Reliability R-34(1), 69-72.
- Tanner, M. A. and Wong, W. H. (1987), 'The calculation of posterior distributions by data augmentation', Journal of the American Statistical Association 82(398), 528-540.

