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Reliability Theory

e Simplest situation: single component modelled with
lifetime distribution.

e Redundant collection of components: e.g. components in
parallel.

Often assume no repair. Once component goes down, it
stays down.

e Repairable redundant collection of components =— now
need to consider a general stochastic process.
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Toy Example : Redundant Repairable Components

State ‘ Meaning

Cl1 1 both C1 and C2 work
0—|: :|—0 2 C1 failed, C2 working
2 3 C1 working, C2 failed

4

system failed

.. a general stochastic process, e.g.

i TP
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Continuous-time Markov Chain Model

State | Meaning
1 both C1 and C2 work
2 C1 failed, C2 working
3 C1 working, C2 failed
4 system failed

C1 down i
C2 up Ayt

Cl up
C2 down

AN

C1 down
C2 down

, SV Af 0
B I S W 0 Af
— 7= 8 T=1 0 WD VW
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Definition of Phase-type Distributions

An absorbing continuous time Markov chain is one in which
there is a state that, once entered, is never left. That is, the
n + 1 state intensity matrix can be written:

S s
(o 7)
where Sisn xn,sisn x 1 and 0is 1 X n, with

s = —Se

Then, a Phase-type distribution (PHT) is defined to be the
distribution of the time to entering the absorbing state.

F =1—nlexp{ySle
Y ~ PHT(r,S) —> v(w) . puS)
@Témteye fy(y) = 7" exp{yS}s >
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Relating to the Toy Example

State | Meaning
1 both PS working
2 1 failed, 2 working
3 1 working, 2 failed
4 subsystem failed

C1 down
C2 up

AN

Clup
C2 down

C1 down
C2 down

— T = S 'S
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Bayesian Inference for PHT
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Inferential Setting

Cano & Rios (2006) provide conjugate posterior calculations in
the context of analysing repairable systems when stochastic
process leading to absorption is observed.

Data
For each system failure time, one has:

Starting state

Length of time in each state

Number of transitions between each state

Ultimate system failure time
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Bayesian Inference for PHT
00000

Inferential Setting

Cano & Rios (2006) provide conjugate posterior calculations in
the context of analysing repairable systems when stochastic
process leading to absorption is observed.

Data
For each system failure time, one has:

e Starting state

oI b of time] !

o Nl ¢ .. | !
Ultimate system failure time

Reduced information scenario = Bladt et al. (2003) provide
a Bayesian MCMC algorithm, or Asmussen et al. (1996) provide
a frequentist EM algorithm.
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Slide for Statisticians!

Strategy is a top-level Gibbs step which achieves the goal of
simulating from

p(m.Sly)
by sampling from
p(m, S, paths - |y)

through the iterative process

p(m,S | paths -, y)

p(paths : | T, S7 y)

where p(paths - |7, S,y) is achieved by a rejection sampling
within Metropolis-Hastings algorithm.
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Bayesian Inference for PHT
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High-level Description of Bladt et al.

The following are key points to note about the MCMC scheme:
o fully dense rate matrix with separate parameters, e.g.
S12 S13 s
So3 82

S31 Sz - 83
0 0 0 0

e no censored data

e slow computational speed in some common scenarios

e focused on ‘distribution fitting’
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High-level Description of Bladt et al.

The following are key points to note about the MCMC scheme:

o fully dense rate matrix with separate parameters, e.g.

S12 S13 81
T — So1 - Saz s
S31 Sz - 83

0 0 0 O

— we extend to allow structure to be imposed
e no censored data

— we accommodate censoring
e slow computational speed in some common scenarios

— we provide novel sampling scheme

e focused on ‘distribution fitting’
%7 \Trmlty

Y collxe — all together shifts focus to stochastic modelling
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Statistical -vs- Stochastic

In other words, we adapt the MCMC algorithm to be fit for
performing inference when PHTs used for stochastic rather
than statistical modelling.

Stochastic Model — Aslett & Wilson

“Stochastic models seek to represent an underlying physical
phenomenon of interest, albeit often in a highly idealised way,
and have parameters that are physically interpretable.” — Isham

Statistical Model — Bladt et al

“In contrast, statistical models are descriptive, and represent
the statistical properties of data and their dependence on
covariates, without aiming to encapsulate the physical
mechanisms involved.” — Isham
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Toy Example Results

35-
30- Param
100 uncensored 25— S1s
observations simulated 520
from PHT with B S13
5!o- 52
-36 1.8 1.8 A Lo
S = 95 —11.3 0 ' 53
95 0 —113 0.5 A
00-
— Af =18, Ar =95 05 10 15 20

Parameter Value
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Toy Example Results

04 -
100 uncensored
. . Param
observations simulated L 03-
from PHT with £ Sa1
502~ Sy
-3.6 1.8 1.8 a
Ar

S = 9.5 —11.3 0 0.1-
9.5 0 —-11.3
]

_ _ Y R Y (R B B (R
= A\r=18, A\, =95 8 9101112131415
Parameter Value

Reliability less sensitive to A,
(Daneshkhah & Bedford 2008) //\gzﬁ
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Toy Example Results

12 -
100 uncensored 10 - Param
observations simulated o 8-
from PHT with 5 51
§ 07 S23
-36 1.8 1.8 a ,_ S
S=| 95 -11.3 0 . ’?
9.5 0 —11.3
0_
= Ay =18 A =95 0.0 ()I.l ()I.z ol.3 ()|.4 ol.s

Parameter Value
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“Tail Depth’

log[Time (secs)]
)

B Trinity
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Performance Improvement

| | | |
2 3 4 5

Upper tail probability (10/-x)

Computational Speedup
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Method
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Computational Speedup
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Overall Performance Improvement

This shows the new method keeping pace in ‘nice’ problems and
significantly outperforming otherwise.

299 0 —-300 1

-2 001 199 O
T = ( 1 =300 O 299)
0 0 0 0

No problems i-iii

MH  ECS
t 1.6us T7.2us
s¢ 104 ps 19 us

All problems i-iii

MH ECS
10.2 hours 0.016 secs
9.4 hours 0.015 secs

2,300,000 x faster on average in hard problem
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Computational Speedup
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Future Work

e Further computational work
matrix exp/functional approximation/autocorrelation

e Study networks of repairable redundant systems modelled
by Phase-types using the extended MCMC methodology

E0—80
B0 /Ejﬂ
El

Hierarchical Bayesian inference.
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