Inference on Phase-type Models via MCMC with application to repairable redundant systems

Louis J. M. Aslett and Simon P. Wilson

Trinity College, University of Dublin

Durham Risk Day, 24th November 2011

- Simplest situation: single component modelled with lifetime distribution.
- Redundant collection of components: e.g. components in parallel.

Often assume no repair. Once component goes down, it stays down.

• Repairable redundant collection of components \implies now [n](http://www.tcd.ie/)eed to consider a general stochastic process.

system failed

∴ a general stochastic process, e.g.

Continuous-time Markov Chain Model

An absorbing continuous time Markov chain is one in which there is a state that, once entered, is never left. That is, the $n + 1$ state intensity matrix can be written:

$$
\mathbf{T}=\left(\begin{array}{cc}\mathbf{S} & \mathbf{s} \\ \mathbf{0} & 0\end{array}\right)
$$

where **S** is $n \times n$, **s** is $n \times 1$ and **0** is $1 \times n$, with

$$
\mathbf{s} = -\mathbf{S}\mathbf{e}
$$

Then, a *Phase-type distribution* (PHT) is defined to be the distribution of the time to entering the absorbing state.

$$
Y \sim \text{PHT}(\boldsymbol{\pi}, \mathbf{S}) \implies \begin{cases} F_Y(y) = 1 - \boldsymbol{\pi}^{\text{T}} \exp\{y\mathbf{S}\} \mathbf{e} \\ f_Y(y) = \boldsymbol{\pi}^{\text{T}} \exp\{y\mathbf{S}\} \mathbf{s} \end{cases}
$$

[Introduction](#page-1-0) [Phase-type Distributions](#page-3-0) [Bayesian Inference for PHT](#page-6-0) [Computational Speedup](#page-15-0) \circ $\circ \circ \bullet$ 000 Relating to the Toy Example

Inferential Setting

Cano & Rios (2006) provide conjugate posterior calculations in the context of analysing repairable systems when stochastic process leading to absorption is observed.

Data

For each system failure time, one has:

- Starting state
- Length of time in each state
- Number of transitions between each state
- Ultimate system failure time

Inferential Setting

Cano & Rios (2006) provide conjugate posterior calculations in the context of analysing repairable systems when stochastic process leading to absorption is observed.

Data

For each system failure time, one has:

- Starting state
- Length of time in each state
- Number of transitions between each state
- Ultimate system failure time

Reduced information scenario \implies Bladt et al. (2003) provide a Bayesian MCMC algorithm, or Asmussen et al. (1996) provide a frequentist EM algorithm.

Strategy is a top-level Gibbs step which achieves the goal of simulating from

$$
p(\boldsymbol{\pi},\mathbf{S}\,|\,\mathbf{y})
$$

by sampling from

$$
p(\boldsymbol{\pi}, \mathbf{S}, \text{paths}|\cdot|\mathbf{y})
$$

through the iterative process

$$
\left\{\n \begin{array}{c}\n p(\pi, \mathbf{S} \mid \text{paths} \cdot, \mathbf{y}) \\
p(\text{paths} \cdot | \pi, \mathbf{S}, \mathbf{y})\n \end{array}\n\right\}
$$

where $p(\text{paths} \cdot | \boldsymbol{\pi}, \mathbf{S}, \mathbf{y})$ is achieved by a rejection sampling within Metropolis-Hastings algorithm.

The following are key points to note about the MCMC scheme:

• fully dense rate matrix with separate parameters, e.g.

$$
\mathbf{T} = \left(\begin{array}{cccc} . & S_{12} & S_{13} & s_1 \\ S_{21} & . & S_{23} & s_2 \\ S_{31} & S_{32} & . & s_3 \\ 0 & 0 & 0 & 0 \end{array}\right)
$$

• no censored data

- slow computational speed in some common scenarios
- [•](http://www.tcd.ie/) focused on 'distribution fitting'

The following are key points to note about the MCMC scheme:

• fully dense rate matrix with separate parameters, e.g.

$$
\mathbf{T} = \left(\begin{array}{cccc} . & S_{12} & S_{13} & s_1 \\ S_{21} & . & S_{23} & s_2 \\ S_{31} & S_{32} & . & s_3 \\ 0 & 0 & 0 & 0 \end{array}\right)
$$

 \rightarrow we extend to allow structure to be imposed

• no censored data

 \rightarrow we accommodate censoring

- slow computational speed in some common scenarios \rightarrow we provide novel sampling scheme
- focused on 'distribution fitting'
- $\frac{d_{\text{long}}}{dt}$ $\frac{d_{\text{long}}}{dt}$ $\frac{d_{\text{long}}}{dt}$ \rightarrow all together shifts focus to stochastic modelling

In other words, we adapt the MCMC algorithm to be fit for performing inference when PHTs used for stochastic rather than statistical modelling.

Stochastic Model −→ Aslett & Wilson

"Stochastic models seek to represent an underlying physical phenomenon of interest, albeit often in a highly idealised way, and have parameters that are physically interpretable." $-$ Isham

Statistical Model \longrightarrow **Bladt et al**

"In contrast, statistical models are descriptive, and represent the statistical properties of data and their dependence on covariates, without aiming to encapsulate the physical mechanisms involved." $-$ Isham

100 uncensored observations simulated from PHT with

$$
\mathbf{S} = \begin{pmatrix} -3.6 & 1.8 & 1.8 \\ 9.5 & -11.3 & 0 \\ 9.5 & 0 & -11.3 \end{pmatrix}
$$

\n
$$
\implies \lambda_f = 1.8, \ \lambda_r = 9.5
$$

100 uncensored observations simulated from PHT with

$$
\mathbf{S} = \begin{pmatrix} -3.6 & 1.8 & 1.8 \\ 9.5 & -11.3 & 0 \\ 9.5 & 0 & -11.3 \end{pmatrix}
$$

\n
$$
\implies \lambda_f = 1.8, \ \lambda_r = 9.5
$$

Reliability less sensitive to λ_r (Daneshkhah & Bedford 2008)

100 uncensored observations simulated from PHT with

$$
\mathbf{S} = \begin{pmatrix} -3.6 & 1.8 & 1.8 \\ 9.5 & -11.3 & 0 \\ 9.5 & 0 & -11.3 \end{pmatrix}
$$

\n
$$
\implies \lambda_f = 1.8, \ \lambda_r = 9.5
$$

[Introduction](#page-1-0) [Phase-type Distributions](#page-3-0) [Bayesian Inference for PHT](#page-6-0) [Computational Speedup](#page-15-0)

'Tail Depth' Performance Improvement

This shows the new method keeping pace in 'nice' problems and significantly outperforming otherwise.

 $2,300,000 \times$ faster on average in hard problem

- Further computational work matrix exp/functional approximation/autocorrelation
- Study networks of repairable redundant systems modelled by Phase-types using the extended MCMC methodology

Hierarchical Bayesian inference.

W