Inference on Phase-type Models via MCMC with application to repairable redundant systems

Louis J. M. Aslett and Simon P. Wilson

Trinity College, University of Dublin

Durham Risk Day, 24th November 2011

Introduction $\bullet \circ$	Phase-type Distributions 000	Bayesian Inference for PHT	Computational Speedup 000
Reliabili	ty Theory		

- Simplest situation: single component modelled with lifetime distribution.
- Redundant collection of components: e.g. components in parallel.

Often assume no repair. Once component goes down, it stays down.

 Repairable redundant collection of components ⇒ now need to consider a general stochastic process.

	Phase-type Distributions	Bayesian Inference for PHT	Computational Speedup
	000	00000	000
T D	namla . Dadunda	at Danainable Can	

Toy Example : Redundant Repairable Components

 \therefore a general stochastic process, e.g.

Bayesian Inference for PHT 00000 Computational Speedup 000

Continuous-time Markov Chain Model

State 1 2 3 4	Meaning both C1 and C2 work C1 failed, C2 working C1 working, C2 failed system failed	$\begin{array}{c} Cl up \\ C2 up \\ \lambda_r \\ Cl down \\ C2 up \\ \lambda_u \\ Cl down \\ C2 down \\ Cl $	
Trinity College Dublin	$oldsymbol{\pi} = \left(egin{array}{c} 1 \ 0 \ 0 \end{array} ight), \mathbf{T} = \left(egin{array}{c} -2\lambda_{\mathrm{f}} \ \lambda_{\mathrm{r}} \ \lambda_{\mathrm{r}} \ \lambda_{\mathrm{r}} \ 0 \end{array} ight)$	$\begin{pmatrix} \lambda_{\rm f} & \lambda_{\rm f} & 0 \\ -\lambda_{\rm r} - \lambda_{\rm f} & 0 & \lambda_{\rm f} \\ 0 & -\lambda_{\rm r} - \lambda_{\rm f} & \lambda_{\rm f} \\ 0 & 0 & 0 \end{pmatrix}$	rce deliter ed

An absorbing continuous time Markov chain is one in which there is a state that, once entered, is never left. That is, the n + 1 state intensity matrix can be written:

$$\mathbf{T} = \left(\begin{array}{cc} \mathbf{S} & \mathbf{s} \\ \mathbf{0} & 0 \end{array}\right)$$

where **S** is $n \times n$, **s** is $n \times 1$ and **0** is $1 \times n$, with

$$s = -Se$$

Then, a *Phase-type distribution* (PHT) is defined to be the distribution of the time to entering the absorbing state.

$$Y \sim \text{PHT}(\boldsymbol{\pi}, \mathbf{S}) \implies \begin{cases} F_Y(y) = 1 - \boldsymbol{\pi}^{\mathrm{T}} \exp\{y\mathbf{S}\}\mathbf{e} \\ f_Y(y) = \boldsymbol{\pi}^{\mathrm{T}} \exp\{y\mathbf{S}\}\mathbf{s} \end{cases}$$

Introduction Phase-type Distributions Bayesian Inference for PHT Computational Speedup 00 000 000 000 000

Relating to the Toy Example

Cano & Rios (2006) provide conjugate posterior calculations in the context of analysing repairable systems when stochastic process leading to absorption is observed.

Data

For each system failure time, one has:

- Starting state
- Length of time in each state
- Number of transitions between each state
- Ultimate system failure time

Cano & Rios (2006) provide conjugate posterior calculations in the context of analysing repairable systems when stochastic process leading to absorption is observed.

Data

For each system failure time, one has:

- Starting state
- Length of time in each state
- Number of transitions between each state
- Ultimate system failure time

Reduced information scenario \implies Bladt et al. (2003) provide a Bayesian MCMC algorithm, or Asmussen et al. (1996) provide a frequentist EM algorithm.

Introduction	Phase-type Distributions	Bayesian Inference for PHT	Computational Speedup
00	000	0●000	000
Slide for	Statisticians!		

Strategy is a top-level Gibbs step which achieves the goal of simulating from

 $p(\boldsymbol{\pi}, \mathbf{S} \,|\, \mathbf{y})$

by sampling from

 $p(\boldsymbol{\pi}, \mathbf{S}, \text{paths } \cdot | \mathbf{y})$

through the iterative process

$$\left(\begin{array}{c}p(\boldsymbol{\pi},\mathbf{S} \,|\, \text{paths }\cdot,\mathbf{y})\\p(\text{paths }\cdot \,|\, \boldsymbol{\pi},\mathbf{S},\mathbf{y})\end{array}\right)$$

where $p(\text{paths } \cdot | \boldsymbol{\pi}, \mathbf{S}, \mathbf{y})$ is achieved by a rejection sampling within Metropolis-Hastings algorithm.

The following are key points to note about the MCMC scheme:

• fully dense rate matrix with separate parameters, e.g.

$$\mathbf{T} = \begin{pmatrix} \cdot & S_{12} & S_{13} & s_1 \\ S_{21} & \cdot & S_{23} & s_2 \\ S_{31} & S_{32} & \cdot & s_3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

• no censored data

- slow computational speed in some common scenarios
- focused on 'distribution fitting'

The following are key points to note about the MCMC scheme:

• fully dense rate matrix with separate parameters, e.g.

$$\mathbf{T} = \begin{pmatrix} \cdot & S_{12} & S_{13} & s_1 \\ S_{21} & \cdot & S_{23} & s_2 \\ S_{31} & S_{32} & \cdot & s_3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 \rightarrow we extend to allow structure to be imposed

no censored data

 \rightarrow we accommodate censoring

- slow computational speed in some common scenarios \rightarrow we provide novel sampling scheme
- focused on 'distribution fitting'
- $\frac{\operatorname{rnnty}}{\operatorname{College}} \to \operatorname{all together shifts focus to stochastic modelling <math>\operatorname{cfl}_{\operatorname{scalar}}$

In other words, we adapt the MCMC algorithm to be fit for performing inference when PHTs used for stochastic rather than statistical modelling.

Stochastic Model \longrightarrow Aslett & Wilson

"Stochastic models seek to represent an underlying physical phenomenon of interest, albeit often in a highly idealised way, and have parameters that are physically interpretable." — Isham

Statistical Model \longrightarrow Bladt et al

"In contrast, statistical models are descriptive, and represent the statistical properties of data and their dependence on covariates, without aiming to encapsulate the physical mechanisms involved." — Isham

Introduction 00	Phase-type Distributions 000	Bayesian Inference for PHT 0000	Computational Speedup
Toy Exa	mple Results		

100 uncensored observations simulated from PHT with

$$\mathbf{S} = \begin{pmatrix} -3.6 & 1.8 & 1.8 \\ 9.5 & -11.3 & 0 \\ 9.5 & 0 & -11.3 \end{pmatrix}$$
$$\implies \lambda_f = 1.8, \ \lambda_r = 9.5$$

Introduction 00	Phase-type Distributions 000	Bayesian Inference for PHT 00000	Computational Speedup
Toy Exa	mple Results		

100 uncensored observations simulated from PHT with

$$\mathbf{S} = \begin{pmatrix} -3.6 & 1.8 & 1.8 \\ 9.5 & -11.3 & 0 \\ 9.5 & 0 & -11.3 \end{pmatrix}$$
$$\implies \lambda_f = 1.8, \ \lambda_r = 9.5$$

Reliability less sensitive to λ_r (Daneshkhah & Bedford 2008)

Introduction 00	Phase-type Distributions 000	Bayesian Inference for PHT 0000	Computational Speedup
Toy Exa	mple Results		

100 uncensored observations simulated from PHT with

$$\mathbf{S} = \begin{pmatrix} -3.6 & 1.8 & 1.8 \\ 9.5 & -11.3 & 0 \\ 9.5 & 0 & -11.3 \end{pmatrix}$$
$$\implies \lambda_f = 1.8, \ \lambda_r = 9.5$$

troduction Phase-type Distrib

Bayesian Inference for PHT 00000 Computational Speedup $\bullet \circ \circ$

'Tail Depth' Performance Improvement

This shows the new method keeping pace in 'nice' problems and significantly outperforming otherwise.

$\mathbf{T} = \begin{pmatrix} -3 & 1 & 1 & 1 \\ 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$		$\mathbf{T} = \begin{pmatrix} -2 & 0.01 & 1.99 & 0\\ 1 & -300 & 0 & 299\\ 299 & 0 & -300 & 1\\ 0 & 0 & 0 & 0 \end{pmatrix}$		
<u>No</u> problems i-iii		<u>All</u> problems i-iii		
	MH	ECS	MH	ECS
\overline{t}	$1.6 \ \mu s$	$7.2 \ \mu s$	10.2 hours	0.016 secs
s_t	$104 \ \mu s$	$19 \ \mu s$	9.4 hours	0.015 secs

 $2,300,000 \times \text{faster on average in hard problem}$

Introduction 00	Phase-type Distributions	Bayesian Inference for PHT	Computational Speedup
	000	00000	$\circ \circ \bullet$
Future V	Nork		

- Further computational work matrix exp/functional approximation/autocorrelation
- Study networks of repairable redundant systems modelled by Phase-types using the extended MCMC methodology

Hierarchical Bayesian inference.

Introduction 00	Phase-type Distributions 000	Bayesian Inference for PHT 00000	Computational Speedup $\circ \circ \bullet$
Aslet	, L. J. M. & Wilson, S	. P. (2011), Markov ch	ain Monte
(Carlo for inference on P	Phase-type models, Tech	nnical report,
	Frinity College Dublin	(in journal submission)	
Asmu	ssen, S., Nerman, O. &	z Olsson, M. (1996), 'F	itting
Į	hase-type distributions	s via the EM algorithm	ι',
	Scandinavian Journal o	of Statistics $23(4)$, 419–	441.
Bladt	, M., Gonzalez, A. & L	auritzen, S. L. (2003),	'The
e	stimation of phase-typ	e related functionals us	sing Markov
C	hain Monte Carlo met	hods', Scandinavian Jo	urnal of
	Statistics 2003 (4), 280-	-300.	
Cano,	J. & Rios, D. (2006),	'Reliability forecasting	in complex
ł	ardware/software syste	ems', Proceedings of th	e First
1	nternational Conference	ce on Availability, Relie	ability and
L.	Security (ARES'06).		
Danes	shkhah, A. & Bedford,	T. (2008), 'Sensitivity	analysis of a
r	eliability system using	gaussian processes', A	dvances in
η	nathematical modeling	for reliability pp. 46–62	2.

