
..
.....

Doing Statistics Blindfold

Louis J. M. Aslett (aslett@stats.ox.ac.uk), Pedro M. Esperança, and Chris C. Holmes
Department of Statistics, University of Oxford

.

1. Privacy in statistics

.

The extensive use of private and personally identifi-
able information in modern statistical applications,
especially in biomedical applications, can present se-
rious privacy concerns.

Indeed, industry is on the brink on embarking on
biomedical applications on a scale never before wit-
nessed via the impending wave of so-called 'wear-
able devices' such as smart watches, which can mon-
itor vital health signs round the clock, perhaps fit-
ting classification models to alert on different health
conditions. Such constrained devices will almost cer-
tainly leverage cloud services, uploading reams of
private health diagnostics to corporate servers.

Is there any hope of honouring people's desire for pri-
vacy while still performing statistical analyses?

.

References

.

Aslett, L. J. M. (2014), HomomorphicEncryption: Fully Homomorphic Encryption. R package version 0.1. www.louisaslett.com/HomomorphicEncryption/.
Fan, J. and Vercauteren, F. (2012), `Somewhat practical fully homomorphic encryption', IACR Cryptology ePrint Archive .
Gentry, C. (2009), A fully homomorphic encryption scheme, PhD thesis, Stanford University.
Rivest, R. L., Adleman, L. and Dertouzos, M. L. (1978), `On data banks and privacy homomorphisms', Foundations of Secure Computation 4(11), 169--180.
.

3. Fan and Vercauteren (2012)

.

Notation
Zq = {n : n ∈ Z,−q/2 < n ≤ q/2}
[a]q ∈ Zq st [a]q = a mod q
Z[x],Zq[x] polynomials with coeff ∈ Z and ∈ Zq

Φn(x) n
th cyclotomic poly, Φ2d(x) = x2d−1

+ 1
R = Z[x]/Φ2d(x) andRq = Zq[x]/Φ2d(x)
a(x) = a ∈ Rq polynomial ring elements
[a]q =⇒ centred reduction of coeff in Zq

· ∼ χ random poly with discrete Gaussian coeff
· ∼ Rq random poly uniformly fromRq

Parameters
• d, degree of polynomial ringsM and C;
• t, q, magnitude of coefficient sets ofM,C;
• σ, magnitude of injected noise.

Encryption scheme
M = Rt, C = Rq ×Rq

Keys: ks ∼ R2 and kp := ([−(a · ks + e)]q, a)
where a ∼ Rq and e ∼ χ.

Encrypt: first mapm ∈ Z→ m̊(x) ∈ Rt

m =
∑

n an2
n → m̊(x) =

∑2d−1−1
n=0 anx

n ∈ Rt

c := ([kp1 ·u+ e1 +∆ · m̊]q, [kp2 ·u+ e2]q)

where u, e1, e2 ∼ χ and∆ =
⌊
q
t

⌉
.

Add/mult: c1 + c2 = ([c11 + c21]q, [c12 + c22]q)

c1×c2 =

([⌊
t(c11 · c21)

q

⌉]
q
,
[⌊

t(c11 · c22+c12 · c21)
q

⌉]
q
,[⌊

t(c12 · c22)
q

⌉]
q

)
Decrypt c: m̊ =

[⌊
t[c1+c2 · ks]q

q

⌉]
t

Thenm = m̊(2).

.

4. High performance R package

.

HomomorphicEncryptionRpackage (Aslett, 2014)
provides easy to use interface which hides all the
complexity of homomorphic encryption.

Implementation is mostly high performance C++,
withmany operations setup to utilisemulti-core par-
allelism without any end-user intervention.

Native support for vectors/matrices and all operators
and common functions overloaded to run encrypted.

p <- parsHelp("FandV", lambda=80, L=8)
k <- keygen(p)
c <- enc(k$pk, matrix(1:9, nrow=3))
cres <- c[,1] %*% c
dec(k$sk, cres)

.

Funding

.

EPSRC programme grant EP/K014463/1
www.i-like.org.uk

.

2. Homomorphic encryption : the blindfold

.

Traditional encryption schemes (AES, SSL, . . .) se-
cure data for archive or communication using a key
k or keypair (kp, ks). Encrypt a message, m ∈ M , to
a ciphertext, c ∈ C, with public key:

c← Enc(kp,m)

Decrypt with secret key:

m = Dec(ks, c)

But if we want to compute, have to decrypt first be-
cause they are 'brittle':

Dec(ks, f(c)) ̸= f(m) ∀ f(·) ̸= Id(·)

Homomorphic encryption
Rivest et al. (1978) hypothesised ∃ schemes allowing
blindfold computation. Not until Gentry (2009) was
it shown to be possible for arbitrary numbers of addi-
tions & multiplications. Homomorphic if:

Dec(ks, Enc(kp,m1) ⋄ Enc(kp,m2)) = m1 ◦m2

for a set of operations ◦ ∈ FM acting inM that have
corresponding operations ⋄ ∈ FC acting inC. "Fully

homomorphic" =⇒ FM = {+,×}.
Fully homomorphic exciting if M = Z/2Z because
+ ≡ ⊻ and × ≡ ∧, so can reproduce arbitrary
boolean logic (arbitrary computation).

Nirvana? Perhaps pergatory . . .
Flurry of excitement, followed by dose of reality.
• C usually complex (e.g. polynomial ring)
– very slow computation
– size of c≫ size ofm

• ∴ M = Z/2Z impractical, but
– M = R impossible
– M = Z/nZ for large n best

• . . . but if integers not boolean circuits we'd like
– division
– comparisons (<,≤, >,≥,=)
which are not possible!

Quick reality check: can just evaluate polynomials of
integers (in practise of limited degree).
The challenge: fit meaningful statistical models
within these constraints.

.

5. Completely Random Forests (CRF)

.

Data representation
Create purely binary representation of categori-
cal/continuous variables (e.g. quintile binning).

1 1.7
2 1.9
3 1.6
...

...
xi2 xi3

→

1 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0
0 0 1 1 0 0 0 0
...

...
x̃i21 x̃i22 x̃i23 x̃i31 x̃i32 x̃i33 x̃i34 x̃i35

Note: now have partition of variable j,Kj st:∑

k∈Kj

x̃ijk x̃ljk = 1 ⇐⇒ xij = xlj

with equality in binned/partition sense.

CRF algorithm
For each t ∈ {1, . . . , T}, build a tree in forest:
i) Tree growth: For each l ∈ {1, . . . , L}, build
a level. Level l has 2l−1 branches. For b ∈
{1, . . . , 2l−1}, construct partitions:
• Splitting variable: Select variable ptlb at random
from P predictors. Due to the representation, this
variable has a partitionKptlb

.
• Split point: Create partition ofKptlb

,
K∗

tlb = {Ktlb
1 ,Ktlb

2 } where Ktlb
j =

∪
ki for

some ki ∈ Kptlb
, with Ktlb

1 ∩ Ktlb
2 = ∅ and

Ktlb
1 ∪Ktlb

2 = Kptlb
.

ii) Tree fitting: Total # training obs from category c
in randomly grown tree t at leaf b ∈ {1, . . . , 2L} is:

ρtbc =
N∑
i=1

ỹic

L∏
l=1

 ∑
k∈K

tlg(b,l)

h(b,l)

x̃i, ptlg(b,l), k

where

g(b, l) :=

⌈
b

2L+1−l

⌉
h(b, l) :=

⌊
(b− 1) mod 2L+1−l

2L−l

⌋
+ 1

iii) Prediction: Given encrypted test obs x̃⋆
jk, then:

ŷ⋆c =
T∑

t=1

2L∑
b=1

ρtbc

L∏
l=1

 ∑
k∈K

tlg(b,l)

h(b,l)

x̃⋆
ptlg(b,l), k

is # of votes for response category c.

Further points too big to fit on poster . . .
• Imbalanced designs
• Natural variance reduction
• Encrypted unbiased stochastic fraction estimate
• Incremental/parallel computation

.

6. Results

.

Other new crypto methods (see tech report soon)
• One-step logistic regression (LR-onestep)
• Semi-parametric naïve Bayes with linear logis-
tic decision boundaries (SNB)

Tested on 20 different data sets from UCI repository.

Performance practicalities?
Full bcw_o data set, 100 tree CRF with 3 levels deep
fitted on Amazon EC2 cluster of 1152 CPU cores in 1
hour 36 minutes fully encrypted.
Total cost: less than US$ 24.

●0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
U

C

in
fl

ne
ph

ad
ul

t

ba
nk

bl
oo

d

bc
w

_d

bc
w

_o

bc
w

_p

ch
es

s

ha
be

r

he
ar

t

io
no

m
ag

ic

m
am

m
o

m
on

ks
3

m
us

k1

m
us

k2

oz
on

e1

oz
on

e8

sp
am

●

●

●

●

●

●

●

●

LR−full
LR−indep
LR−onestep
GNB
MNB
SNB
CRF
RF
freq class '1'

AUC for 100 randomisations of the train/test sets.

●

0 20 40 60 80 100

0.
5

1.
0

1.
5

2.
0

LR
−

on
es

te
p/

LR
−

fu
ll

●●
●●●

●
●
●
●

●
●●

●
●●

●
●●

●●●●●
●●

●
●
●
●●

●
●●●●

●
●●

●

●
●●

●
●
●●

●●

●
●
●
●●●●●●

●

●●●

●

●●●●
●●●

●
●
●●●●

●●

●

●
●
●
●
●

●
●

●
●●●●●

●
●●●●

●●
●
●

●

0 20 40 60 80 100

0.
5

1.
0

1.
5

2.
0

S
N

B
/G

N
B

●●●
●●●●

●●●●●
●●●●●●●●●●

●●●●●●●●
●●●

●●●●●●●●●
●●●●●●●

●●●●●●
●●●

●
●
●
●
●
●●●●●●●

●
●●

●
●●

●
●●●

●●●●●●
●●

●●●●●
●
●●●●

●●

●

0 20 40 60 80 100

0.
5

1.
0

1.
5

2.
0

C
R

F
/R

F

●
●
●
●
●

●
●

●●
●●

●
●
●
●●

●

●
●
●

●
●
●

●
●●

●
●
●
●

●●
●●●●●●●●

●

●
●●

●●●

●

●

●
●

●

●●●
●

●
●●

●

●

●●
●

●●
●
●
●
●
●●●

●

●

●
●
●●●●

●

●

●

●●
●
●

●
●●●●

●
●
●

Ratio of encryptedmethod to traditionalmethod AUC

