Heike Fuhrmann-Stroissnigg

Heike Fuhrmann-Stroissnigg

San Mateo, California, United States
1K followers 500 connections

About

Cellular and molecular biologist with over 10 years of experience in biotech and…

Activity

Experience

  • Rubedo Life Sciences Graphic

    Rubedo Life Sciences

    Sunnyvale, California, United States

  • -

    Foster City, California

  • -

    San Francisco Bay Area

  • -

    San Francisco Bay Area

  • -

  • -

  • -

    Vienna

Education

Publications

  • A-β-Galactosidase-Based Screening Assay for the Identification of Senotherapeutic Drugs

    JoVE

    Cellular senescence is the key factor in the development of chronic age-related pathologies. Identification of therapeutics that target senescent cells show promise for extending healthy aging. Here, we present a novel assay to screen for the identification of senotherapeutics based on measurement of senescence associated β-Galactosidase activity in single cells.

    Other authors
    See publication
  • Fisetin is a senotherapeutic that extends health and lifespan

    EBioMedicine

    Senescence is a tumor suppressor mechanism activated in stressed cells to prevent replication of damaged DNA. Senescent cells have been demonstrated to play a causal role in driving aging and age-related diseases using genetic and pharmacologic approaches. We previously demonstrated that the combination of dasatinib and the flavonoid quercetin is a potent senolytic improving numerous age-related conditions including frailty, osteoporosis and cardiovascular disease. The goal of this study was to…

    Senescence is a tumor suppressor mechanism activated in stressed cells to prevent replication of damaged DNA. Senescent cells have been demonstrated to play a causal role in driving aging and age-related diseases using genetic and pharmacologic approaches. We previously demonstrated that the combination of dasatinib and the flavonoid quercetin is a potent senolytic improving numerous age-related conditions including frailty, osteoporosis and cardiovascular disease. The goal of this study was to identify flavonoids with more potent senolytic activity.

    Other authors
    See publication
  • Hsp90 inhibitors as senolytic drugs to extend healthy aging

    Cell Cycle

    Aging is characterized by progressive decay of biological systems and although it is not considered a disease, it is one of the main risk factors for chronic diseases and many types of cancers. The accumulation of senescent cells in various tissues is thought to be a major factor contributing to aging and age-related diseases. Removal of senescent cells during aging by either genetic or therapeutic methods have led to an improvement of several age related disease in mice. In this preview, we…

    Aging is characterized by progressive decay of biological systems and although it is not considered a disease, it is one of the main risk factors for chronic diseases and many types of cancers. The accumulation of senescent cells in various tissues is thought to be a major factor contributing to aging and age-related diseases. Removal of senescent cells during aging by either genetic or therapeutic methods have led to an improvement of several age related disease in mice. In this preview, we highlight the significance of developing senotherapeutic approaches to specifically kill senescent cells (senolytics) or suppress the senescence-associated secretory phenotype (SASP) that drives sterile inflammation (senomorphics) associated with aging to extend healthspan and potentially lifespan. Also, we provide an overview of the senotherapeutic drugs identified to date. In particular, we discuss and expand upon the recent identification of inhibitors of the HSP90 co-chaperone as a new class of senolytics.

    Other authors
    • Laura J Niedernhofer,
    • Paul D Robbins
    See publication
  • Identification of HSP90 inhibitors as a novel class of senolytics

    Nature Communications

    Aging is the main risk factor for many chronic degenerative diseases and cancer. Increased senescent cell burden in various tissues is a major contributor to aging and age-related diseases. Recently, a new class of drugs termed senolytics were demonstrated to extending healthspan, reducing frailty and improving stem cell function in multiple murine models of aging. To identify novel and more optimal senotherapeutic drugs and combinations, we established a senescence associated β-galactosidase…

    Aging is the main risk factor for many chronic degenerative diseases and cancer. Increased senescent cell burden in various tissues is a major contributor to aging and age-related diseases. Recently, a new class of drugs termed senolytics were demonstrated to extending healthspan, reducing frailty and improving stem cell function in multiple murine models of aging. To identify novel and more optimal senotherapeutic drugs and combinations, we established a senescence associated β-galactosidase assay as a screening platform to rapidly identify drugs that specifically affect senescent cells. We used primary Ercc1−/− murine embryonic fibroblasts with reduced DNA repair capacity, which senesce rapidly if grown at atmospheric oxygen. This platform was used to screen a small library of compounds that regulate autophagy, identifying two inhibitors of the HSP90 chaperone family as having significant senolytic activity in mouse and human cells. Treatment of Ercc1−/∆ mice, a mouse model of a human progeroid syndrome, with the HSP90 inhibitor 17-DMAG extended healthspan, delayed the onset of several age-related symptoms and reduced p16INK4a expression. These results demonstrate the utility of our screening platform to identify senotherapeutic agents as well as identified HSP90 inhibitors as a promising new class of senolytic drugs.

    Other authors
    See publication
  • New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463.

    Aging Cell

    Senescent cells accumulate with aging and at sites of pathology in multiple chronic diseases. Senolytics are drugs that selectively promote apoptosis of senescent cells by temporarily disabling the pro-survival pathways that enable senescent cells to resist the pro-apoptotic, pro-inflammatory factors that they themselves secrete. Reducing senescent cell burden by genetic approaches or by administering senolytics delays or alleviates multiple age- and disease-related adverse phenotypes in…

    Senescent cells accumulate with aging and at sites of pathology in multiple chronic diseases. Senolytics are drugs that selectively promote apoptosis of senescent cells by temporarily disabling the pro-survival pathways that enable senescent cells to resist the pro-apoptotic, pro-inflammatory factors that they themselves secrete. Reducing senescent cell burden by genetic approaches or by administering senolytics delays or alleviates multiple age- and disease-related adverse phenotypes in preclinical models. Reported senolytics include dasatinib, quercetin, navitoclax (ABT263), and piperlongumine. Here we report that fisetin, a naturally-occurring flavone with low toxicity, and A1331852 and A1155463, selective BCL-XL inhibitors that may have less hematological toxicity than the less specific BCL-2 family inhibitor navitoclax, are senolytic. Fisetin selectively induces apoptosis in senescent but not proliferating human umbilical vein endothelial cells (HUVECs). It is not senolytic in senescent IMR90 cells, a human lung fibroblast strain, or primary human preadipocytes. A1331852 and A1155463 are senolytic in HUVECs and IMR90 cells, but not preadipocytes. These agents may be better candidates for eventual translation into clinical interventions than some existing senolytics, such as navitoclax, which is associated with hematological toxicity.

    Other authors
    • Yi Zhu
    • Ewald J. Doornebal
    • Tamar Pirtskhalava
    • Nino Giorgadze
    • Mark Wentworth
    • Laura J. Niedernhofer
    • Paul D. Robbins
    • Tamara Tchkonia
    • James L. Kirkland
    See publication
  • Cellular senescence mediates fibrotic pulmonary disease

    Nature Communications

    Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by interstitial remodelling, leading to compromised lung function. Cellular senescence markers are detectable within IPF lung tissue and senescent cell deletion rejuvenates pulmonary health in aged mice. Whether and how senescent cells regulate IPF or if their removal may be an efficacious intervention strategy is unknown. Here we demonstrate elevated abundance of senescence biomarkers in IPF lung, with p16 expression…

    Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by interstitial remodelling, leading to compromised lung function. Cellular senescence markers are detectable within IPF lung tissue and senescent cell deletion rejuvenates pulmonary health in aged mice. Whether and how senescent cells regulate IPF or if their removal may be an efficacious intervention strategy is unknown. Here we demonstrate elevated abundance of senescence biomarkers in IPF lung, with p16 expression increasing with disease severity. We show that the secretome of senescent fibroblasts, which are selectively killed by a senolytic cocktail, dasatinib plus quercetin (DQ), is fibrogenic. Leveraging the bleomycin-injury IPF model, we demonstrate that early-intervention suicide-gene-mediated senescent cell ablation improves pulmonary function and physical health, although lung fibrosis is visibly unaltered. DQ treatment replicates benefits of transgenic clearance. Thus, our findings establish that fibrotic lung disease is mediated, in part, by senescent cells, which can be targeted to improve health and function.

    Other authors
    • Marissa J. Schafer
    • Thomas A. White
    • Koji Iijima
    • Andrew J. Haak
    • Yi Zhu
    • Tamara Tchkonia
    • Paul D Robbins
    • James L Kirkland
    • Nathan K. LeBrasseur
    See publication
  • Quantitative Analysis of Cellular Senescence in Culture and In Vivo.

    Curr Protoc Cytom.

    Cellular senescence refers to the irreversible growth arrest of normally dividing cells in response to various types of stress. Cellular senescence is induced by telomere shortening due to repeated cell division, which causes a DNA damage response, as well as genotoxic, oxidative, and inflammatory stress. Strong mitogenic signaling, such as oncogene activation, also drives cells into a senescent state. Senescent cells express a specific subset of genes, termed the senescence-associated…

    Cellular senescence refers to the irreversible growth arrest of normally dividing cells in response to various types of stress. Cellular senescence is induced by telomere shortening due to repeated cell division, which causes a DNA damage response, as well as genotoxic, oxidative, and inflammatory stress. Strong mitogenic signaling, such as oncogene activation, also drives cells into a senescent state. Senescent cells express a specific subset of genes, termed the senescence-associated secretory phenotype (SASP), including pro-inflammatory factors, growth factors, and matrix metalloproteinases, which together promote non-cell autonomous, secondary senescence. Clearance of senescent cells that accumulate with age improves health span, implicating cellular senescence as a contributing factor to the aging process. Thus, there is a need for methods to identify and quantify cellular senescence, both in cultured cells and in vivo. Here, methods for the most well-characterized and widely used senescent assays are described, from cell morphology and senescence-associated β-galactosidase (SA-βgal) staining to nuclear biomarkers, SASP, and altered levels of tumor suppressors

    Other authors
    See publication
  • Identification of a Novel Senolytic Agent, Navitoclax, Targeting the Bcl-2 Family of Anti-Apoptotic Factors.

    Aging Cell

    Clearing senescent cells extends healthspan in mice. Using a hypothesis‐driven bioinformatics‐based approach, we recently identified pro‐survival pathways in human senescent cells that contribute to their resistance to apoptosis. This led to identification of dasatinib (D) and quercetin (Q) as senolytics, agents that target some of these pathways and induce apoptosis preferentially in senescent cells. Among other pro‐survival regulators identified was Bcl‐xl. Here, we tested whether the Bcl‐2…

    Clearing senescent cells extends healthspan in mice. Using a hypothesis‐driven bioinformatics‐based approach, we recently identified pro‐survival pathways in human senescent cells that contribute to their resistance to apoptosis. This led to identification of dasatinib (D) and quercetin (Q) as senolytics, agents that target some of these pathways and induce apoptosis preferentially in senescent cells. Among other pro‐survival regulators identified was Bcl‐xl. Here, we tested whether the Bcl‐2 family inhibitors, navitoclax (N) and TW‐37 (T), are senolytic. Like D and Q, N is senolytic in some, but not all types of senescent cells: N reduced viability of senescent human umbilical vein epithelial cells (HUVECs), IMR90 human lung fibroblasts, and murine embryonic fibroblasts (MEFs), but not human primary preadipocytes, consistent with our previous finding that Bcl‐xl siRNA is senolytic in HUVECs, but not preadipocytes. In contrast, T had little senolytic activity. N targets Bcl‐2, Bcl‐xl, and Bcl‐w, while T targets Bcl‐2, Bcl‐xl, and Mcl‐1. The combination of Bcl‐2, Bcl‐xl, and Bcl‐w siRNAs was senolytic in HUVECs and IMR90 cells, while combination of Bcl‐2, Bcl‐xl, and Mcl‐1 siRNAs was not. Susceptibility to N correlated with patterns of Bcl‐2 family member proteins in different types of human senescent cells, as has been found in predicting response of cancers to N. Thus, N is senolytic and acts in a potentially predictable cell type‐restricted manner. The hypothesis‐driven, bioinformatics‐based approach we used to discover that dasatinib (D) and quercetin (Q) are senolytic can be extended to increase the repertoire of senolytic drugs, including additional cell type‐specific senolytic agents.

    Other authors
    • Yi Zhu
    • Tamara Tchkonia
    • Haiming M. Dai
    • Yuanyuan Y. Ling
    • Michael B. Stout
    • Tamar Pirtskhalava
    • Nino Giorgadze
    • Paul D Robbins
    • James L Kirkland
    See publication
  • Can senolytics give us healthy aging

    LN Insight Drug Discovery

    Aging is not yet considered a disease, but it is the largest risk factor for most degenerative diseases as
    well as cancer. Recently, a new class of drugs has been developed, termed senolytics, with
    the ability to improve the quality of life in different mouse models of aging by removing damaged,
    senescent cells.

    Other authors
    • Yi Zhu
    • Tamara Tchkonia
    • Laura J Niedernhofer
    • James L Kirkland
    • Paul D Robbins
    See publication
  • The Achilles’ Heel of Senescent Cells: From Transcriptome to Senolytic Drugs

    Aging Cell

    The healthspan of mice is enhanced by killing senescent cells using a transgenic suicide gene. Achieving the same using small molecules would have a tremendous impact on quality of life and the burden of age-related chronic diseases. Here, we describe the rationale for identification and validation of a new class of drugs termed senolytics, which selectively kill senescent cells. By transcript analysis, we discovered increased expression of pro-survival networks in senescent cells, consistent…

    The healthspan of mice is enhanced by killing senescent cells using a transgenic suicide gene. Achieving the same using small molecules would have a tremendous impact on quality of life and the burden of age-related chronic diseases. Here, we describe the rationale for identification and validation of a new class of drugs termed senolytics, which selectively kill senescent cells. By transcript analysis, we discovered increased expression of pro-survival networks in senescent cells, consistent with their established resistance to apoptosis. Using siRNA to silence expression of key nodes of this network, including ephrins (EFNB1 or 3), PI3Kδ, p21, BCL-xL, or plasminogen-activated inhibitor-2, killed senescent cells, but not proliferating or quiescent, differentiated cells. Drugs targeting these same factors selectively killed senescent cells. Dasatinib eliminated senescent human fat cell progenitors, while quercetin was more effective against senescent human endothelial cells and mouse BM-MSCs. The combination of dasatinib and quercetin was effective in eliminating senescent MEFs. In vivo, this combination reduced senescent cell burden in chronologically aged, radiation-exposed, and progeroid Ercc1−/Δ mice. In old mice, cardiac function and carotid vascular reactivity were improved 5 days after a single dose. Following irradiation of one limb in mice, a single dose led to improved exercise capacity for at least 7 months following drug treatment. Periodic drug administration extended healthspan in Ercc1−/∆ mice, delaying age-related symptoms and pathology, osteoporosis, and loss of intervertebral disk proteoglycans. These results demonstrate the feasibility of selectively ablating senescent cells and the efficacy of senolytics for alleviating symptoms of frailty and extending healthspan.

    Other authors
    • Yi Zhu
    • Tamara Tchkonia
    • Tamar Pirtskhalava
    • Adam Gower
    • Husheng Ding
    • Nino Giorgadze
    • Paul D. Robbins
    • Laura J. Niedernhofer
    • James L. Kirkland
    See publication
  • The Light Chains of Microtubule-Associated Proteins MAP1A and MAP1B Interact with α1-Syntrophin in the Central and Peripheral Nervous System

    PLoS ONE 01/2012; 7(11):e49722.

    Microtubule-associated proteins of the MAP1 family (MAP1A, MAP1B, and MAP1S) share, among other features, a highly conserved COOH-terminal domain approximately 125 amino acids in length. We conducted a yeast 2-hybrid screen to search for proteins interacting with this domain and identified α1-syntrophin, a member of a multigene family of adapter proteins involved in signal transduction. We further demonstrate that the interaction between the conserved COOH-terminal 125-amino acid domain (which…

    Microtubule-associated proteins of the MAP1 family (MAP1A, MAP1B, and MAP1S) share, among other features, a highly conserved COOH-terminal domain approximately 125 amino acids in length. We conducted a yeast 2-hybrid screen to search for proteins interacting with this domain and identified α1-syntrophin, a member of a multigene family of adapter proteins involved in signal transduction. We further demonstrate that the interaction between the conserved COOH-terminal 125-amino acid domain (which is located in the light chains of MAP1A, MAP1B, and MAP1S) and α1-syntrophin is direct and occurs through the pleckstrin homology domain 2 (PH2) and the postsynaptic density protein 95/disk large/zonula occludens-1 protein homology domain (PDZ) of α1-syntrophin. We confirmed the interaction of MAP1B and α1-syntrophin by co-localization of the two proteins in transfected cells and by co-immunoprecipitation experiments from mouse brain. In addition, we show that MAP1B and α1-syntrophin partially co-localize in Schwann cells of the murine sciatic nerve during postnatal development and in the adult. However, intracellular localization of α1-syntrophin and other Schwann cell proteins such as ezrin and dystrophin-related protein 2 (DRP2) and the localization of the axonal node of Ranvier-associated protein Caspr1/paranodin were not affected in MAP1B null mice. Our findings add to a growing body of evidence that classical MAPs are likely to be involved in signal transduction not only by directly modulating microtubule function, but also through their interaction with signal transduction proteins.

    Other authors
    • Rainer Noiges
    • Irmgard Fischer
    • Adam E Douglas
    • Fatiha Nothias
    • Stanley C Froehner
    • Friedrich Propst
    See publication
  • S-nitrosylation of microtubule-associated protein 1B mediates nitric-oxide-induced axon retraction

    Nat Cell Biol 2007 Sep 19;9(9):1035-45. Epub 2007 Aug 19.

    Treatment of cultured vertebrate neurons with nitric oxide leads to growth-cone collapse, axon retraction and the reconfiguration of axonal microtubules. We show that the light chain of microtubule-associated protein (MAP) 1B is a substrate for S-nitrosylation in vivo, in cultured cells and in vitro. S-nitrosylation occurs at Cys 2457 in the COOH terminus. Nitrosylation of MAP1B leads to enhanced interaction with microtubules and correlates with the inhibition of neuroblastoma cell…

    Treatment of cultured vertebrate neurons with nitric oxide leads to growth-cone collapse, axon retraction and the reconfiguration of axonal microtubules. We show that the light chain of microtubule-associated protein (MAP) 1B is a substrate for S-nitrosylation in vivo, in cultured cells and in vitro. S-nitrosylation occurs at Cys 2457 in the COOH terminus. Nitrosylation of MAP1B leads to enhanced interaction with microtubules and correlates with the inhibition of neuroblastoma cell differentiation. We further show, in dorsal root ganglion neurons, that MAP1B is necessary for neuronal nitric oxide synthase control of growth-cone size, growth-cone collapse and axon retraction. These results reveal an S-nitrosylation-dependent signal-transduction pathway that is involved in regulation of the axonal cytoskeleton and identify MAP1B as a major component of this pathway. We propose that MAP1B acts by inhibiting a microtubule- and dynein-based mechanism that normally prevents axon retraction.

    Other authors
    • Luise Descovich
    • Jakob Fuhrmann
    • Waltraud Kutschera
    • Julius Kostan
    • Arabella Meixner
    • Fatiha Nothias
    • Friedrich Propst
    • Alzbeta Trancikova
    See publication
  • Heterotypic complex formation between subunits of microtubule-associated proteins 1A and 1B is due to interaction of conserved domains.

    Biochim Biophys Acta 2006 Oct 25;1763(10):1011-6. Epub 2006 Aug 25

    The microtubule-associated proteins MAP1A and MAP1B are related but distinct multi-subunit protein complexes that consist of heavy and light chains. The predominant forms of these complexes are homotypic, i.e. they consist of a MAP1A heavy chain associated with MAP1A light chains or a MAP1B heavy chain associated with MAP1B light chains, respectively. In addition, MAP1A and MAP1B can exchange subunits and form heterotypic complexes consisting of a MAP1A heavy chain associated with MAP1B light…

    The microtubule-associated proteins MAP1A and MAP1B are related but distinct multi-subunit protein complexes that consist of heavy and light chains. The predominant forms of these complexes are homotypic, i.e. they consist of a MAP1A heavy chain associated with MAP1A light chains or a MAP1B heavy chain associated with MAP1B light chains, respectively. In addition, MAP1A and MAP1B can exchange subunits and form heterotypic complexes consisting of a MAP1A heavy chain associated with MAP1B light chains which might play a role in a transition period of neuronal differentiation. Here we extend previous findings by confirming that heterotypic MAP1B heavy chain-MAP1A light chain complexes also exist in the developing murine brain. We show that these complexes form through interaction of homologous domains conserved in heavy and light chains of MAP1A and MAP1B. Likewise, conserved domains of the MAP1A and MAP1B light chains account for formation of light chain heterodimers. By yeast 2-hybrid analysis we located the light chain binding domain on the heavy chain to amino acids 211-508, thereby defining a new functional subdomain.

    Other authors
    • Rainer Noiges
    • Rene Eichinger
    • Alzbeta Trancikova
    • Isle Kalny
    • Friedrich Propst
    See publication
  • FIP-2, AN IKAPPAB-KINASE-GAMMA-RELATED PROTEIN, IS ASSOCIATED WITH THE GOLGI APPARATUS AND TRANSLOCATES TO THE MARGINAL BAND DURING CHICKEN ERYTHROBLAST DI

    Exp Cell Res 2002 Aug;278(2):133-45

    Using an antiserum directed against marginal band associated proteins of chicken erythrocytes we isolated clones encoding the chicken homolog of 14.7K-interacting protein 2 (FIP-2), a protein potentially involved in tumor necrosis factor-alpha/nuclear factor-kappaB signaling, from a chicken erythroblast cDNA library. We found that chicken FIP-2 was expressed in a variety of tissues and cell types, but unlike its human counterpart, alternative splicing does not appear to take place. Analysis of…

    Using an antiserum directed against marginal band associated proteins of chicken erythrocytes we isolated clones encoding the chicken homolog of 14.7K-interacting protein 2 (FIP-2), a protein potentially involved in tumor necrosis factor-alpha/nuclear factor-kappaB signaling, from a chicken erythroblast cDNA library. We found that chicken FIP-2 was expressed in a variety of tissues and cell types, but unlike its human counterpart, alternative splicing does not appear to take place. Analysis of intracellular localization revealed that FIP-2 was concentrated at the Golgi apparatus in most cells. Perturbation of the Golgi structure without loss of Golgi function (by treatment with nocodazole) resulted in a retention of FIP-2 at the dispersed Golgi fragments. In contrast, disruption of both Golgi structure and function (by brefeldin A) led to a loss of FIP-2 from Golgi membranes. Remarkably, during erythroblast differentiation FIP-2 was found to translocate from the Golgi to the marginal band. Our results support the hypothesis of a function of the Golgi apparatus in signal transduction. Moreover, our results raise the possibility that the marginal band of chicken erythrocytes, in addition to its role in morphogenesis, has a function in signal transduction and that FIP-2 is in some way involved in its formation.

    Other authors
    • Marion Repitz
    • Angelina Miloloza
    • Irene Linhartova
    • Hartmut Beug
    • Friedrich Propst
    • Gerhard Wiche
    See publication

Languages

  • German

    -

  • English

    -

  • French

    -

View Heike’s full profile

  • See who you know in common
  • Get introduced
  • Contact Heike directly
Join to view full profile

Other similar profiles

Explore collaborative articles

We’re unlocking community knowledge in a new way. Experts add insights directly into each article, started with the help of AI.

Explore More

Others named Heike Fuhrmann-Stroissnigg

Add new skills with these courses