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Abstract—Weaving is a highly automated industrial process.
Due to small inaccuracies during the production process, different
types of weave defects can occur, by which the quality of the
produced fabric is heavily impaired. The defects can diminish
the selling price by up to 50%. Current automated visual defect
detection systems need to be adjusted by a trained operator to
every new fabric, making them impractical for industrial use.
We present a novel automated visual defect detection framework
which localizes and tracks yarns in new and unseen fabrics
without the need for tedious settings, and which consecutively
detects anomalies. The detection of weave defects is based on
three consecutive steps, (1) the identification of single weft
and warp float-points with fully convolutional networks, (2) the
tracking of single yarns based on a set of rules, and finally (3)
the recognition of defects using statistical analysis.

Index Terms—Fabric Defect Detection, Plain Weave Fabrics,
Yarn Tracking, Fully Convolutional Network, Anomaly Detection

I. INTRODUCTION

The textile industry is one of the biggest industries in
the world and produces several million tons of fabric every
year. However, fabric defect detection is mostly provided by
human operators. Whether due to fatigue, inattention or simply
brief distraction, human operators are quite prone to missing
even important defects in textiles. Undetected weaving defects
lead to low quality finished products. In the end, the selling
price of these low quality products diminishes, or they remain
unsaleable.

Automatic defect detection for fabrics may overcome this
problem. The presently most promising approaches are all
based on image analysis techniques: it is easy to take pictures
of the fabric, either on-loom or off-loom using a digital cam-
era, and to analyze the picture with a machine vision system.
A variety of visual fabric defect detection frameworks have
already been presented in the past. However, most algorithms
rely, either implicitly or explicitly, on a skilled human operator
who needs to adjust various settings of the framework before
it can be used on a new fabric. Other frameworks are only
able to work on specific kinds of fabric, or are only able to
detect large flaws.

With today’s rapidly changing fashion and clothing trends,
fabric production is confronted with an ever-increasing need
for fast and technically convenient fabric design switching. In

response, there is a wide need for a visual defect detection
system that is capable of flaw detection even in previously
unseen fabrics, without any prior knowledge of color, and
which can furthermore cope with a wide range of yarn thick-
nesses and yarn spacings. Such an algorithm would continue
its analytical work on the loom output, even following changes
in the produced fabric, without any intervention of a human
operator.

Convolutional neural networks (CNNs) have emerged in
recent years as the new state-of-the art technique in image
processing. Numerous improvements in CNNs have already
now revolutionized our envisioning of machine capabilities,
and many of the advances are actually implemented in a
variety of industrial applications. These networks are reliant
on a large number of training images, i.e. a vast ground-truth
is needed. Such a vast ground-truth dataset does not exist for
textile defects, since a vast number of potentially different
defects can occur for the many different fabrics and textures
under study. This has so far prevented the application of CNNs
to fabric defect analysis.

Fabrics are composed of horizontal yarns, called wefts, and
vertical yarns, named warps. The points at which the yarns
intersect are either termed warp float-points, or weft float-
points, depending on which of the two yarn types lies on top.
Independent of the specific fabric, both types of float-points
have a similar structure, and it is this specific property that
can be utilized for the purpose of defect detection in unknown
fabrics.

In this paper we describe a new approach to fabric defect
detection based on float-point analysis. Relying on CNNs,
single yarn float-points can be detected. The yarns themselves
can then be tracked throughout the entire image which finally
allows localizing all existing defects. This specific approach
requires neural networks only for one sub-step, for which
annotated data with a sufficient number of labels for each
class can easily be generated. In comparison, other approaches
rely on annotated defects. A database with enough variety of
defects and fabrics for the training of a CNN is very difficult
to obtain. In this paper, neural networks are used to detect
irregularities in textiles without the need of annotated defects.
This makes our approach much easier to use than previous
approaches.



(a) Double weft (b) Missing warp

(c) Slub (d) Hole

Fig. 1. Typical fabric defects found in the used textiles

II. PREVIOUS WORK

Visual defect detection systems are widespread for vari-
ous industrial use cases. For fabrics, a variety of distinct
approaches have been published, their complexity ranges
from simple thresholding techniques [1] to more sophisticated
algorithms such as Gabor Wavelets [2], [3], or correlation
approaches [4].

A. Literature surveys

The importance and wide relevance of our present topic
is reflected in the large number of available publications. An
overview over the different methods is provided in four dif-
ferent surveys that were carried out in recent years. The most
influential and extensive one with more than 160 publications
covered and more than 170 citations was written by Kumar
[5] in 2008. Two further surveys were published in 2009 by
Mahajan et al. [6], and in 2011 by Ngan et al. [7]. The most
recent one was published in 2016 by Hanbay [8].

An exhaustive quantitative comparison between different
approaches was published by Schneider [4] in 2015. He im-
plemented several of the most promising published algorithms
and evaluated them on a a large independent dataset. He found
that essentially none of the published algorithms can actually
achieve the accuracies claimed by the respective authors on
this dataset.

B. Classic approaches

Classic approaches can be divided in to:
• Basic approaches
• Spectral approaches
• Statistics based approaches
By far the majority of publications use spectral approaches

to detect defects in fabrics. Spectral approaches are indeed

well-suited for this purpose, due to the highly repetitive
structure of wefts and warps in fabrics. For example, a
Fourier transformation can reveal deviations from a criss-cross
structure. Exemplary approaches for this techniques are [9],
[10]. However, in fabrics, the repetitive structure can have
small deviations due to the production process. Since many
of these small deviations do not actually represent defects,
they lead to a large number of false positive detections using
Fourier transformation techniques. Similarly, small defects can
remain undetected. Another possibility is the use of Wavelets
or Gabor filters, as demonstrated by [2], [3]. These filters can
detect anomalies in the frequency domain while preserving
locality information. As a result, they can detect much smaller
defects – some of the best fabric defect detection results have
been reported using these techniques.

Statistics based approaches often rely on Local Binary Pat-
terns (LBP) or Gray-Level Co-occurrence Matrices (GLCM).
These techniques can be used to compare new images to
known defect-free images, and are computationally efficient.
This makes them suitable for real-time implementation on
embedded devices. Exemplary implementations can be found
in [11], [12].

One of the most promising approaches relies on detection
of single warp float-points by cross-correlating a warp float-
point template with fabric images [4]. The located float-points
are used together with a yarn and grid matrix in order to get a
complete model of the fabric. With this model, fabric defects
can be detected with different thresholding and histogramming
techniques. in [4], a very high accuracy is reported, as even
small defects can be detected with this approach.

However, all of the presented approaches require fine-
tuning by hand for every new fabric, which necessitates either
providing an exemplifying defect-free image, or function only
under very specific conditions. In the end, for an industrial use
of the respective frameworks, a trained operator is still needed
in order to robustly detect the defects.

C. Deep learning approaches

In recent years, deep learning techniques have started to
revolutionize computer vision systems in various industries.
For example, Masci et al. [13] report on the successful use
of CNNs for steel defect classification. With this approach,
much better results than any other approach in this area
were achieved. For fabric defect detection, similar approaches
remain a niche so far due to the diversity of fabrics and defects.

An equally promising approach using deep learning is
reported by [14]. They trained two stacked denoising autoen-
coders, one for defect detection and one for defect localization.
This approach was compared to a single stacked denoising
autoencoder, and both approaches seem to perform well.

In the end, however, this approach again relies on the
availability of both defect-free as well as defective samples
for the training of the autoencoders. Without prior knowledge
of a fabric, this technique can not be used to detect defects.



III. METHODS

The method proposed in this paper allows the detection
of defects in unseen fabrics, without any prior knowledge
about the fabric apart from the order of magnitude of yarn
spacing. In particular, there is no need for defects to be given
when training the algorithm. All that is needed is to provide a
limited set of images with labelled locations of the weft and
warp float-points. The highly superior advantage of this new
method in comparison to other approaches is that the fabric
itself is available in large amounts, and can therefore be easily
analyzed, whereas an exhaustive set of all possible defects for
corresponding fabrics, which would be very difficult to obtain,
is not needed.

The complete image processing pipeline is illustrated in
Figure 2: An image of the fabric (Figure 2a) is first segmented
in single weft and warp float-points (Figure 2b). Using the
segmented image, individual weft and warp yarns are tracked
and followed through the whole image (Figure 2c and 2d).
Every float-point which does not lie near the edge of the image
is finally classified as either defective or defect-free (Figures
2e and 2f), depending on specific measurements.

(a) Front-light image (b) Segmented image

(c) Tracked Wefts (d) Tracked Warps

(e) Faults detected in wefts (f) Faults detected in warps

Fig. 2. Fabric defect detection pipeline

A. Segmentation in weft and warp float-points

Different fabrics can have different yarn thickness, higher
or lower yarn density, and one or more different colors.

Depending on the fabric and possible defects, front-light or
back-light images are favorable. As defects in a variety of
different fabrics need to be detected, we use both front-light
and back-light images for optimal results. If two pictures of a
fabric are taken at exactly the same place of the fabric while
the fabric is illuminated once from the front and once from the
back, we can concatenate both images, creating a two-channel,
or six-channel image if colored images are used. Such a six-
channel image can be fed into a convolutional neural network.

In a first step, single weft and warp float-points are localized
in such a six-channel image by semantic image segmentation
using CNNs. The output segmentation consists of three dif-
ferent values: weft float-points (white, or 2), warp float-points
(black, or 0) and neutral (grey, or 1). The spacings between
single yarns and the interims between weft and warp float-
points are classified as neutral. Finally, to suppress noise in
the output image, morphological filtering is used. One binary
opening and one binary closing operation with size 3x3 are
carried out on weft-float as well as on warp-float areas.

B. Utilized networks

For the semantic image segmentation, which is a critical
step in this pipeline, the U-net [15] and the fully convolutional
network [16] provide appropriate network designs. Based on
these designs, three different network architectures, labeled
A, B, and C, were evaluated. Due to the nature of float-point
detection, adjustments on the number of layers and feature
maps per layers were carried out. Information about float-
points is very local and easy to grasp for neural networks.
In consequence, a reduction of the number of network layers
and feature maps does not significantly reduce the quality of
the output. Meanwhile, a decrease in the number of convolu-
tions and parameters leads to much faster image processing,
crucial for fabric defect detection. For training, the adam
optimizer was used with a learning rate of 0.01. Further, batch-
normalization layers [17] were introduced in all networks for
improved training.

The U-net [15] served as inspiration for networks A and
C. In contrast to the original network, both networks are
shallower. Network A uses only two pooling steps, a total
of 10 convolution layers, and 128 feature maps in the most
contracted layers. Three pooling steps, a total of 14 convo-
lution layers, and a maximum of 512 feature maps per layer
were used for network C. For comparison, the original network
uses 19 convolution layers, 4 pooling steps, and a maximum
of 1024 feature maps.

Network B was derived from the fully convolutional ar-
chitecture described in [16]. However, the total number of
convolution layers was reduced from 14 to 7, the number of
pooling operations from 5 to 3, and the number of feature
maps in the fully convolutional layers from 4096 to 384.

C. Yarn Tracking

Every black (resp. white) region in the segmented and
morphologically filtered image is considered as a single warp
(resp. weft) float-point – the location is set at its center. To



track single yarns through the image, these superpixels need
to be connected. It is assumed that warps lie vertically in the
image, and wefts horizontally. Thus, for each warp float-point,
the upper and lower neighbor need to be identified. This is
done by searching for the nearest neighbors in a vertical tube,
centered at the float-point. The tube diameter is fixed based
on the superpixel size. With the area of a float-point defined
as the number of pixels of the superpixel, the tube diameter
can be calculated as:

dtube =

√
Area(floatpoint)

2
(1)

The nearest upper warp float-point is considered as the
upper neighbor, while the nearest lower warp float-point in
this tube is considered as the lower neighbor. The distance
between two points is defined as the number of pixels between
the two centers. In such a way, no assumptions about the
spacing between yarns is necessary. This simple algorithm
works already well for the majority of float-points, but not
perfectly due to some irregularities in the fabrics or a noisy
image segmentation. To correct small errors, minor corrections
are carried out:

• Remove non-plausible connections
Since yarns are straight lines, two float-points cannot
share the same lower (or upper) neighbor. If this is
observed, both connections are cut.

• Patch missing links
If the majority of links are correct, the median distance
between two float-points can be obtained. The median
distance can then be used to estimate the location of un-
found neighbors. The estimated location of the neighbor
is searched within a radius of one third of the median
distance, and if a floating point found in this area, it is
considered as the neighbor.

The same procedure is repeated for the weft float-points,
but with a tube in the horizontal direction.

D. Defect detection

Once all yarns are tracked through the image, several mea-
surements for every float-point can be extracted. In particular,
the size of the float-point area and the distances to the upper
and lower (resp. right and left) neighbor are known. These
parameters can be used for an automatic defect detection. For
a defect-free fabric, the parameters should remain roughly the
same for every float-point. In fact, defective float-points can
now be determined via anomaly detection algorithms. For the
anomaly detection, first the Minimum Covariance Determinant
(MCD) algorithm is used to estimate location and scatter of the
data. This algorithm can robustly estimate these, even in the
case of some strong deviating points by choosing a subset of
samples (e.g. 80%) with the smallest covariance determinant.
The exact procedure is explained in [18].

For every float-point, the Mahalanobis distance to the center
of the data can then be calculated with:

MD(x) =
√
(x− µ)TS−1(x− µ), (2)

where µ is the centre and S the covariance computed by
the MCD algorithm.

Fig. 3. A plot of the distances of each float-point in an image with a defect
to its neighbors. In the defect detection algorithm, a third dimension, the size
of the float-point, is also used but can not be depicted here. Points which are
marked as defective are colored in red, whereas defect-free floating points are
marked in green. Readers of the digital version are invited to zoom in for a
better view.

Finally, the Mahalanobis distance can be used to classify
single float-points as defect-free or defective via a threshold.

E. Analysis of the Results

For a binary classification, such as defective and non-
defective images of fabrics, sensitivity and specificity are the
classical statistical measures and were thus applied to the
output of the defect detection algorithm:

True Positives (TP) Correctly identified as defective
False Positives (FP) Incorrectly identified as defective

False Negatives (FN) Incorrectly identified as defect-free
True Negatives (TN) Correctly identified as defect-free

Sensitivity (TPR) Probability of correct defect
identification

Specificity (TNR) Probability of correct defect-free
identification

Accuracy (ACC) Proportion of correctly classified data
TP, FP, FN and TN can be read directly from the output.

Sensitivity, specificity and accuracy need to be calculated
according to the following equations:

TPR =
TP

TP + FN
(3)

TNR =
TN

TN + FP
(4)

ACC =
TP + TN

TP + FP + FN + TN
(5)

To detect even small defects and to be less susceptible
to noise, the number of faulty float-points is calculated for
each of the four quadrants (with an overlap of 100px) of an
image, and then given as a percentage of all points in this



quadrant. The maximum percentage of faulty points of the four
quadrants is then used for classification. If it was higher than
a predefined threshold, the image was marked as defective.

Two parameters can be set for the defect detection algo-
rithm: one threshold for the minimum Mahalanobis distance
for each float-point to be marked as defective, and one
threshold for the minimum percentage of float-points needed
for classification as defective. Initially, the threshold 1 was set
to 30 and the threshold 2 to 1.5, but they were adjusted by
hand for each fabric according to the amount of noise in the
segmentation result and the size of the defects.

IV. DATASET

For this work, nine different plain weave fabrics were at
hand. All fabrics had at least one defect which occurred during
production. To obtain a broader variety of defects, some small
local defects such as holes were added by hand.

Plain weave is the most commonly used weave type. Each
weft goes under one warp and then over one warp. The next
warp yarn does the same, but in reverse order, resulting in a
criss-cross pattern. Other weave types, such as twill and satin
weaves, where the warp yarn passes under one weft, and then
over at least two wefts, were not analyzed for this work.

For this work, a total of 1431 plain weave images from 9
different fabrics with 89 defects were obtained. In this context,
one images denotes a concatenated front-light and back-light
image (see Section III-A). The images were taken from a close
distance with a 50mm lens. In at least one image of every
fabric, the weft-float and warp-float regions were hand-labelled
for the training of the FCN.

TABLE I
OVERVIEW OVER PLAIN WEAVE IMAGES TAKEN AND ANALYZED DURING

THIS WORK

Fabric #Images #Images
with defects

#Annotated
images

P1 212 13 4
P2 160 15 6
P3 160 15 4
P4 159 14 2
P5 139 12 3
P6 156 11 2
P7 170 4 1
P8 147 2 1
P9 128 3 1
Total: 1431 89 24

V. EVALUATION AND RESULTS

Our new fabric defect detection pipeline was tested for all
three different network architectures explained in Section III-B
and for all fabrics detailed in Table I. Detailed results can
be found in Tables II, III and IV. The fabric number in the
tables indicates the fabric on which they were tested. All neural
networks tested were trained without the fabric on which they
are tested. Hence, the tables demonstrate the ability of the
applied neural networks to successfully analyze other fabrics.

Overall, the fully convolutional architecture (network B) as
well as the bigger U-net architecture (network C) produce

TABLE II
CLASSIFICATION RESULTS OF NETWORK A

Fa. Measurements
TP FP TN FN TPR TNR ACC

P1 10 65 134 3 0.77 0.67 0.68
P2 5 22 123 10 0.33 0.85 0.80
P3 14 0 145 1 0.93 1.00 0.99
P4 8 2 143 6 0.57 0.99 0.95
P5 4 7 125 3 0.57 0.95 0.93
P6 5 14 131 6 0.45 0.90 0.87
P7 2 8 158 2 0.50 0.95 0.94
P8 1 0 145 1 0.50 1.00 0.99
P9 3 4 121 0 1.00 0.97 0.97
TL 52 122 1225 32 0.62 0.91 0.89

TABLE III
CLASSIFICATION RESULTS OF NETWORK B

Fa. Measurements
TP FP TN FN TPR TNR ACC

P1 13 2 197 0 1.00 0.99 0.99
P2 5 0 145 10 0.33 1.00 0.94
P3 15 1 144 0 1.00 0.99 0.99
P4 13 5 140 1 0.93 0.97 0.96
P5 5 0 132 2 0.71 1.00 0.99
P6 4 35 110 7 0.36 0.76 0.73
P7 3 8 158 1 0.75 0.95 0.95
P8 2 0 145 0 1.00 1.00 1.00
P9 2 2 123 1 0.67 0.98 0.98
TL 62 53 1294 22 0.74 0.96 0.95

TABLE IV
CLASSIFICATION RESULTS OF NETWORK C

Fa. Measurements
TP FP TN FN TPR TNR ACC

P1 12 1 198 1 0.92 0.99 0.99
P2 9 1 144 6 0.60 0.99 0.96
P3 15 0 145 0 1.00 1.00 1.00
P4 7 0 145 7 0.50 1.00 0.96
P5 3 0 132 4 0.43 1.00 0.97
P6 2 0 145 9 0.18 1.00 0.94
P7 3 6 160 1 0.75 0.96 0.96
P8 2 0 145 0 1.00 1.00 1.00
P9 3 2 123 0 1.00 0.98 0.98
TL 56 10 1336 28 0.67 0.99 0.97

superb results, while the smaller U-net architecture (network
A) performs mediocre by comparison. Network C best in
overall accuracy (0.96) and TNR (0.99), network B achieves
the best TPR (0.74). Only 11 false positives were detected
using network C, by far the best result and a very important
measurement. In industrial use, every detected defect would
necessitate a human supervisor to check the fabric. Since this
is time-consuming, a high FP rate is unacceptable.

With the two well performing network architectures, the
fabrics P1, P3, P8 and P9 achieve outstanding results. Perfect
results are achieved on fabric P3 and P8, all defects are
correctly detected and no false alarms are given for both well
performing networks.

In Figure 4, an original test image of fabric P8 is displayed
together with the detected warp and weft float-points and
the tracked warp yarns. Float-points, which were labeled as
defective are marked with red color, defect-free float-points



Fig. 4. Exemplary defect detection result: Fabric P8, image 180

are marked in blue. Weft yarns are not displayed for better
visibility, they show comparable classification results. As
demonstrated for this specific fabric, as well as on one of the
other three fabrics with outstanding results, the performance
of the algorithm seems already good enough for industrial use.

Unfortunately, not all fabrics show such excellent results.
The worst performance can be observed on fabric eight. For
every network architecture, more defects were missed than
detected. The reason for this under-performance is to be
sought in an unsatisfactory image segmentation result. Here,
the image segmentation step could not grasp the structure of
the fabric.

VI. DISCUSSION

The presented framework is capable of robustly tracking
the location of all yarns throughout the image, and allows
detection of defects in plain weave fabrics. For each fabric in
the dataset, the algorithm was trained only on other fabrics.
By this procedure, the generalization ability of the algorithm
to unknown fabrics is demonstrated. For two fabrics, very
promising results were obtained: all defects were detected
and no false alarm was given. Accuracies of more than 96%
were obtained for most other fabrics. For these achieved
accuracies, and especially for the good segmentation results,
the combination of using both front- and back-light images
was crucial. Using both types of lighting at the same time
provides clear advantages for defect detection. However, an
exhaustive quantitative testing, comparing this dual-lighting
approach to front-light only and back-light only, still needs to
be performed.

The most promising results were obtained for fabrics with
similar fabrics in the training set. In contrast, the weave defect
detection did not work well on all fabrics. In effect, the blind
yarn detection, and thus the following defect detection, failed
on one fabric, fabric P6. This fabric had a texture disparate
from all other fabrics in the dataset and was furthermore
intended for a entirely different use case.

A total of 1431 images from nine different fabrics with
a total of 89 mistakes were analyzed. While this is enough
to demonstrate the functionality of the presented algorithm,
the ability to generalize to new fabrics would further improve
with a higher number of different fabrics. Thus, for a use

case in industry, more ground-truth labels of the semantic
segmentation of more divers fabrics are necessary.

VII. CONCLUSION

We have presented a novel approach for defect detection
in textiles. The framework is shown to work well on plain
weave fabrics. For the first time, yarns can be localized
and tracked in unseen fabrics without tedious parameter set-
tings. Subsequently, the weave defects can be easily detected.
For this innovative approach, no defects were necessary for
training. Without algorithmic changes, the application of this
framework to other textiles such as twill and satin weave
fabrics appears feasible.
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