
Functions in Lua

Р. Иеруcалимский

 2

function values

anonymous functions

lambdas

first-class functions

What does “function” mean?

closures

 3

It means several things...

 4

Functions are First-Class Values

● Functions are values.
– or, there are values that represent functions.

● These values can be stored in variables and
data structures.

● They can be passed as arguments to and
returned by other functions (higher-order
functions).

● They can be called anywhere in a program.

 5

Functions can be Nested

● We can define functions inside other functions.
– recursively

function foo (x)
 function p (y)
 print(y)
 end
 p(2*x)
end

 6

There are Anonymous Functions

● We can write a function without giving a name
to it.

● Syntactically, we can write a function as an
expression in the language.

add = (function (x,y) return x+y end)

 7

Nested Functions have Lexical
Scoping

● A function can access local variables from its
enclosing functions.

● A function can escape from its enclosing
function (e.g., by being returned) and still
access those variables.

function makecounter (n)
 return function (d)
 n = n + d
 return n
 end
 end

c = makecounter(10)
print(c(1)) --> 11
print(c(3)) --> 14

 8

Properties Somewhat Independent

● C has functions as first-class values, but no
nesting.

● Lisp (original) has functions as first-class values
and anonymous functions, but no lexical scoping.

● Pascal has lexical scoping, but functions are not
first-class values.

● Python 2 and Java have lexical scoping, but only
for values.

● Blocks in Ruby and Smalltalk are anonymous with
lexical scoping, but they are not first-class values.

 9

How Lua uses functions
to achieve its goals

 10

What are the Goals?

● Portability
● Simplicity
● Small size
● Scripting

 11

Portability

● Runs on most platforms we ever heard of:
– Posix (Linux, BSD, etc.), OS X, Windows, Android,

iOS, Arduino, Raspberry Pi, Symbian, Nintendo DS,
PSP, PS3, IBM z/OS, etc.

– written in ANSI C.

● Runs inside OS kernels.
– FreeBSD, Linux

● Written in ANSI C, as a free-standing
application.

 12

Simplicity

Reference manual with less than 100 pages
(proxy for complexity).

(spine)

Documents the language, the
libraries, and the C API.

 13

Size

Lua 5.3

Lua 1.0

Lua 5.2

Lua 5.1
Lua 5.0

Lua4.0

 14

Scripting

● Scripting language x dynamic language
– scripting emphasizes inter-language communication.

● Program written in two languages.
– a scripting language and a system language

● System language implements the hard parts of the
application.
– algorithms, data structures

– little change

● Scripting glues together the hard parts.
– flexible, easy to change

 15

Lua and Scripting

● Lua is implemented as a library.
● Lua has been designed for scripting.
● Good for embedding and extending.
● Embedded in C/C++, Java, Fortran, C#, Perl,

Ruby, Python, etc.

 16

How Lua uses functions
to achieve its goals

 17

Modules

● Tables populated with functions

● Several facilities come for free
• submodules
• local names

local m = require "math"
print(m.sqrt(20))
local f = m.sqrt
print(f(10))

local math = require "math"
print(math.sqrt(10))

 18

Modules

● Lexical scoping (for local definitions)
● Pros

– needs no new features

– easy to interface with other languages

– flexible

● Cons
– not as good as “the real thing” (regarding syntax)

– too dynamic (?)

 19

Eval

● Hallmark of dynamic languages.
● Lua offers a “compile” function instead.

function eval (code)
 -- compiles source 'code' and
 -- executes the result
 return load(code)()
end

function load (code)
 -- creates an anonymous function
 -- with the given body
 return eval("return function () " ..
 code .. " end")
end

 20

Load

● Clearly separates compilation from execution.

● load is a pure function.

● It is easier to do eval from load than the
reverse.

● Any code always runs inside some function.
– we can declare local variables, which naturally work

like static variables for the functions inside the
chunk.

– chunks can return values.

 21

Exception Handling

● All done through two functions, pcall and
error

try {
 <block/throw>
}
catch (err) {
 <exception code>
}

local ok, err = pcall(function ()
 <block/error>
end)
if not ok then
 <exception code>
end

 22

Exception Handling

● Anonymous functions with lexical scoping
● Pros

– simple semantics

– no extra syntax

– simple to interface with other languages

● Cons
– verbose

– body cannot return/break

– try is not cost-free

 23

● Old style:

● New style:

Iterators

local inv = {}
table.foreach(t, function (k, v)
 inf[v] = k
end)

for w in allwords(file) do
 print(w)
end

 24

function allwords (file)
 local line = io.read(file)
 local pos = 1
 return function ()
 while line do
 local w, e = string.match(line, "(%w+)()", pos)
 if w then
 pos = e
 return w
 else
 line = io.read(file)
 pos = 1
 end
 end
 return nil
 end
end

 25

Iterators

● Anonymous functions (for old style), lexical
scoping

● Pros
– easy to interface with other languages

● Cons
– cannot traverse nil

– not so simple as explained

 26

function a:foo (x)
 ...
end

a.foo = function (self,x)
 ...
end

a:foo(x) a.foo(a,x)

Objects

● first-class functions + tables ≈ objects
● syntactical sugar for methods

• handles self

 27

Objects

● Pros
– flexible

– easy to interface with other languages

– clear semantics

– needs few new features

● Cons
– may need some work to get started (DIY)

– no standard model (DIY)

 28

The Lua-C API

● Functions are constructs found in most
languages, wich compatible basic semantics.

● Constructions based on functions are easier to
translate between different languages.

● Modules, OO programming, and iterators need
no extra features in the Lua-C API.
– all done with standard mechanisms for tables and

functions.

● Exception handling and load go the opposite
way: primitives in the API, exported to Lua.

 29

Implementation

● Based on closures.
● A closure represents the code of a function plus

the environment where the function was defined.
● Lua uses upvalues to represent the

environment, one for each external variable
used by the function.

● Zero cost when not used.
– variables live on the stack.

 30

Closure

Basic data structures

variable in
the stack

 31

List of open upvalues (for unicity)

 32

Closing an upvalue

 33

Several Details...

● One-pass compiler.
● Safe for space.
● Uses flattening for nesting.
● List of open upvalues is limited by program

syntax.
● A closure may point to upvalues in different

stacks.

 34

Final Remarks

● Lua is not only about tables.
● Like with tables, Lua itself uses functions for

several important constructs in the language.
● In Lua, the use of constructors based on first-

class functions greatly helps to make the C API
general.

 35

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Lua main goals
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Modules
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Objects
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

