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function values

anonymous functions

lambdas

first-class functions

What does “function” mean?

closures
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It means several things...
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Functions are First-Class Values

● Functions are values.
– or, there are values that represent functions.

● These values can be stored in variables and 
data structures.

● They can be passed as arguments to and 
returned by other functions (higher-order 
functions).

● They can be called anywhere in a program.
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Functions can be Nested

● We can define functions inside other functions.
– recursively

function foo (x)
  function p (y)
    print(y)
  end
  p(2*x)
end
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There are Anonymous Functions

● We can write a function without giving a name 
to it.

● Syntactically, we can write a function as an 
expression in the language.

add = (function (x,y) return x+y end)
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Nested Functions have Lexical 
Scoping

● A function can access local variables from its 
enclosing functions.

● A function can escape from its enclosing 
function (e.g., by being returned) and still 
access those variables.

function makecounter (n)
  return function (d)
           n = n + d
           return n
         end
 end

c = makecounter(10)
print(c(1))   --> 11
print(c(3))   --> 14
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Properties Somewhat Independent 

● C has functions as first-class values, but no 
nesting.

● Lisp (original) has functions as first-class values 
and anonymous functions, but no lexical scoping.

● Pascal has lexical scoping, but functions are not 
first-class values.

● Python 2 and Java have lexical scoping, but only 
for values.

● Blocks in Ruby and Smalltalk are anonymous with 
lexical scoping, but they are not first-class values.
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How Lua uses functions 
to achieve its goals
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What are the Goals?

● Portability
● Simplicity
● Small size
● Scripting
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Portability

● Runs on most platforms we ever heard of:
– Posix (Linux, BSD, etc.), OS X, Windows, Android, 

iOS, Arduino, Raspberry Pi, Symbian, Nintendo DS, 
PSP, PS3, IBM z/OS, etc.

– written in ANSI C.

● Runs inside OS kernels.
– FreeBSD, Linux

● Written in ANSI C, as a free-standing 
application.
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Simplicity

Reference manual with less than 100 pages 
(proxy for complexity).

(spine)

Documents the language, the 
libraries, and the C API.
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Size

Lua 5.3

Lua 1.0

Lua 5.2

Lua 5.1
Lua 5.0

Lua4.0
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Scripting

● Scripting language x dynamic language
– scripting emphasizes inter-language communication.

● Program written in two languages.
–  a scripting language and a system language

● System language implements the hard parts of the 
application.
– algorithms, data structures

– little change

● Scripting glues together the hard parts.
– flexible, easy to change
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Lua and Scripting

● Lua is implemented as a library.
● Lua has been designed for scripting.
● Good for embedding and extending.
● Embedded in C/C++, Java, Fortran, C#, Perl, 

Ruby, Python, etc.
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How Lua uses functions 
to achieve its goals
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Modules

● Tables populated with functions

● Several facilities come for free
• submodules
• local names

local m = require "math"
print(m.sqrt(20))
local f = m.sqrt
print(f(10))

local math = require "math"
print(math.sqrt(10))
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Modules

● Lexical scoping (for local definitions)
● Pros

– needs no new features

– easy to interface with other languages

– flexible

● Cons
– not as good as “the real thing” (regarding syntax)

– too dynamic (?)



 19

Eval

● Hallmark of dynamic languages.
● Lua offers a “compile” function instead.

function eval (code)
   -- compiles source 'code' and
   -- executes the result
   return load(code)()
end

function load (code)
   -- creates an anonymous function
   -- with the given body
   return eval("return function () " .. 
                code .. " end")
end
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Load

● Clearly separates compilation from execution.

● load is a pure function.

● It is easier to do eval from load than the 
reverse.

● Any code always runs inside some function.
– we can declare local variables, which naturally work 

like static variables for the functions inside the 
chunk.

– chunks can return values.
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Exception Handling

● All done through two functions, pcall and 
error

try {
  <block/throw>
}
catch (err) {
  <exception code>
}

local ok, err = pcall(function ()
  <block/error>
end)
if not ok then
  <exception code>
end
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Exception Handling

● Anonymous functions with lexical scoping 
● Pros

– simple semantics

– no extra syntax

– simple to interface with other languages

● Cons
– verbose

– body cannot return/break

– try is not cost-free



 23

● Old style:

● New style:

Iterators

local inv = {}
table.foreach(t, function (k, v)
  inf[v] = k
end)

for w in allwords(file) do
  print(w)
end
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function allwords (file)
  local line = io.read(file)
  local pos = 1
  return function ()
    while line do
      local w, e = string.match(line, "(%w+)()", pos)
      if w then
        pos = e
        return w
      else
        line = io.read(file)
        pos = 1
      end
    end
    return nil
  end
end
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Iterators

● Anonymous functions (for old style), lexical 
scoping

● Pros
– easy to interface with other languages

● Cons
– cannot traverse nil

– not so simple as explained
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function a:foo (x)
  ...
end

a.foo = function (self,x)
  ...
end

a:foo(x) a.foo(a,x)

Objects

● first-class functions + tables ≈ objects
● syntactical sugar for methods

• handles self
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Objects

● Pros
– flexible

– easy to interface with other languages

– clear semantics

– needs few new features

● Cons
– may need some work to get started (DIY)

– no standard model (DIY)
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The Lua-C API

● Functions are constructs found in most 
languages, wich compatible basic semantics.

● Constructions based on functions are easier to 
translate between different languages.

● Modules, OO programming, and iterators need 
no extra features in the Lua-C API.
– all done with standard mechanisms for tables and 

functions.

● Exception handling and load go the opposite 
way: primitives in the API, exported to Lua.
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Implementation

● Based on closures.
● A closure represents the code of a function plus 

the environment where the function was defined.
● Lua uses upvalues to represent the 

environment, one for each external variable 
used by the function.

● Zero cost when not used.
– variables live on the stack.
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Closure

Basic data structures

variable in 
the stack
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List of open upvalues (for unicity)
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Closing an upvalue
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Several Details...

● One-pass compiler.
● Safe for space.
● Uses flattening for nesting.
● List of open upvalues is limited by program 

syntax.
● A closure may point to upvalues in different 

stacks.
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Final Remarks

● Lua is not only about tables.
● Like with tables, Lua itself uses functions for 

several important constructs in the language.
● In Lua, the use of constructors based on first-

class functions greatly helps to make the C API 
general.
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