
The Virtual Machine of Lua 5.0

Roberto Ierusalimschy, PUC-Rio

Lua

th
e

lan
guage

1

WHAT IS LUA?

• Yet another scripting language. . .

• Conventional syntax:

function fact (n)
if n == 0 then

return 1
else

return n * fact(n - 1)
end

end

function map (a, f)
local res = {}
for i, v in ipairs(a) do

res[i] = f(v)
end
return res

end

2

WHAT IS LUA? (CONT.)

• Associative arrays as single data structure

◦ first-class values

◦ any value allowed as index (not only strings)

◦ very efficient implementation

◦ syntactic sugar: a.x for a["x"]

• Several not-so-conventional features

◦ first-class functions, lexical scoping, proper tail call, coroutines,
“dynamic overloading”

3

WHY LUA?

• Light

◦ simple and small language, with few concepts

◦ core with approximately 60K, complete executable with 140K

• Portable

◦ written in “clean C”

◦ runs in PalmOS, EPOC (Symbian), Brew (Qualcomm),
Playstation II, XBox, embedded systems, mainframes, etc.

• Efficient

◦ see benchmarks

• Easy to embed

◦ C/C++, Java, Fortran, Ruby, OPL (EPOC), C#

4

SOME APPLICATIONS

• Games

◦ LucasArts, BioWare, Microsoft, Relic Entertainment, Absolute
Studios, Monkeystone Games, etc.

• Other Uses

◦ tomsrtbt - ”The most Linux on one floppy disk”

◦ Crazy Ivan Robot (champion of RoboCup 2000/2001 in Denmark)

◦ chip layouts (Intel)

◦ APT-RPM (Conectiva & United Linux)

◦ Space Shuttle Hazardous Gas Detection System
(ASRC Aerospace)

5

POLL FROM GAMEDEV.NET

Which language do you use for scripting in your game engine?

My engine doesn’t have scripting 27.3% 188
I made my own 26.3% 181
Lua 20.5% 141
C (with co-routines) 9.75% 67
Python 6.98% 48
Lisp 1.45% 10
Perl 1.31% 9
Ruby 1.16% 8
TCL 0.58% 4
Other 4.51% 31

6

VIRTUAL MACHINE

• Most virtual machines use a stack model

◦ heritage from Pascal p-code, followed by Java, etc.

• Example in Lua 4.0:

while a<lim do a=a+1 end

3 GETLOCAL 0 ; a
4 GETLOCAL 1 ; lim
5 JMPGE 4 ; to 10
6 GETLOCAL 0 ; a
7 ADDI 1
8 SETLOCAL 0 ; a
9 JMP -7 ; to 3

8

ANOTHER MODEL FOR VIRTUAL MACHINES

• Stack-machine instructions are too low level

• Interpreters add high overhead per instruction

• Register machines allow more powerful instructions

ADD 0 0 [1] ; a=a+1

• Overhead to decode more complex instruction is compensated by
fewer instructions

• “registers” for each function are allocated on the execution stack at
activation time

◦ large number of registers (up to 256) simplifies code generation

9

INSTRUCTION FORMATS

• Three-argument format, used for most operators

◦ binary operators & indexing

0561314222331

C B A OP

• All instructions have a 6-bit opcode

◦ the virtual machine in Lua 5.0 uses 35 opcodes

• Operand A refers to a register

◦ usually the destination

◦ limits the maximum number of registers per function

• Operands B and C can refer to a register or a constant

◦ a constant can be any Lua value, stored in an array of constants
private to each function

10

INSTRUCTION EXAMPLES

ADD 0 0 259 ; a = a+1

DIV 0 259 0 ; a = 1/a

GETTABLE 0 1 260 ; a = t.x

SETTABLE 0 1 260 ; t.x = a

◦ assuming that the variable a is in register 0, t is in register 1, the number 1 is at
index 3 in the array of constants, and the string "x" is at index 4.

11

INSTRUCTION FORMATS

• There is an alternative format for instructions that do not need three
arguments or with arguments that do not fit in 9 bits

◦ used for jumps, access to global variables, access to constants with
indices greater than 256, etc.

056131431

Bx A OP

12

INSTRUCTION EXAMPLES

GETGLOBAL 0 260 ; a = x

SETGLOBAL 1 260 ; x = t

LT 0 259 ; a < 1 ?

JMP * 13

◦ assuming that the variable a is in register 0, t is in register 1, the number 1 is at
index 3 in the array of constants, and the string "x" is at index 4.

◦ conceptually, LT skips the next instruction (always a jump) if the test fails. In the
current implementation, it does the jump if the test succeed.

◦ jumps interpret the Bx field as a signed offset (in excess-217)

13

CODE EXAMPLE

(all variables are local)

while i<lim do a[i] = 0 end

-- Lua 4.0

2 GETLOCAL 2 ; i
3 GETLOCAL 1 ; lim
4 JMPGE 5 ; to 10
5 GETLOCAL 0 ; a
6 GETLOCAL 2 ; i
7 PUSHINT 0
8 SETTABLE
9 JMP -8 ; to 2

-- Lua 5.0

2 JMP * 1 ; to 4
3 SETTABLE 0 2 256 ; a[i] = 0
4 LT * 2 1 ; i < lim?
5 JMP * -3 ; to 3

14

IMPLEMENTATION OF TABLES

• Each table may have two parts, a “hash” part and an “array” part

• Example:
{n = 3; 100, 200, 300}

100

200

300

nil

Header

n 3

nil

15

TABLES: HASH PART

• Hashing with internal lists for collision resolution

• Run a rehash when table is full:

nil

val

linkvaluekey

 0
→ insert key 4 →

nil

val

link

nil

val

valuekey

 0

 4

• Avoid secondary collisions, moving old elements when inserting new
ones

nil

val

link

nil

val

valuekey

 0

 4 → insert key 3 →

nil

val

val

link

val

valuekey

 0

 4

 3

16

TABLES: ARRAY PART

• Problem: how to distribute elements among the two parts of a table?

◦ or: what is the best size for the array?

• Sparse arrays may waste lots of space

◦ A table with a single element at index 10,000 should not have
10,000 elements

• How should next table behave when we try to insert index 5?
a = {n = 3; 100, 200, 300}; a[5] = 500

100

200

300

nil

Header

n 3

nil

5 500

nil

Header

100

200

300

nil

n 3

nil

500

nil

nil

nil

17

COMPUTING THE SIZE OF A TABLE

• When a table rehashes, it recomputes the size of both its parts

• The array part has size N , where N satisfies the following rules:

◦ N is a power of 2

◦ the table contains at least N/2 integer keys in the interval [1, N]

◦ the table has at least one integer key in the interval [N/2 + 1, N]

• Algorithm is O(n), where n is the total number of elements in the table

18

COMPUTING THE SIZE OF A TABLE (CONT.)

• Basic algorithm: to build an array where ai is the number of integer
keys in the interval (2i−1,2i]

◦ array needs only 32 entries

• Easy task, given a fast algorithm to compute blog2 xc

◦ the index of the highest one bit in x

19

COMPUTING THE SIZE OF A TABLE (CONT.)

• Now, all we have to do is to traverse the array:

total = 0
bestsize = 0
for i=0,32 do

if a[i] > 0 then
total += a[i]
if total >= 2^(i-1) then

bestsize = i
end

end
end

20

PERFORMANCE

program Lua 4.0 Lua 5’ Lua 5.0 Perl 5.6.1
random (1e6) 1.03s 0.92s (89%) 1.08s (105%) 1.64s (159%)
sieve (100) 0.94s 0.79s (84%) 0.62s (66%) 1.29s (137%)
heapsort (5e4) 1.04s 1.00s (96%) 0.70s (67%) 1.81s (174%)
matrix (50) 0.89s 0.78s (87%) 0.58s (65%) 1.13s (127%)
fibo (30) 0.74s 0.66s (89%) 0.69s (93%) 2.91s (392%)
ack (8) 0.91s 0.84s (92%) 0.84s (92%) 4.77s (524%)

◦ all test code copied from The Great Computer Language Shootout

◦ Lua 5’ is Lua 5.0 without table-array optimization, tail calls, and dynamic stacks
(related to coroutines).

◦ percentages are relative to Lua 4.0.

21

FINAL REMARKS

• Compiler for register-based machine is more complex

◦ needs some primitive optimizations to use registers

• Interpreter for register-based machine is more complex

◦ needs to decode instructions

• Requirements

◦ no more than 256 local variables and temporaries

• Main gains:

◦ avoid moves of local variables and constants

◦ fewer instructions per task

◦ potential gain with CSE optimizations

22

