Initiative goal

A more resilient HKH cryosphere through research and monitoring, informed policy making, and community engagement

Regional Programme

River Basins and Cryosphere

Miriam Jackson

Programme Coordinator - Cryosphere Initiative

Our Focus

Spotlighting the cryosphere's importance

The cryosphere provides a range of goods and services for mountain communities – contributing to the HKH region’s life and economy. We assess this asset and act on its related issues: water resource management, scenarios of future water availability, and disaster risks.

Linkages between the cryosphere and society are complex. It is unclear how cryospheric changes will impact communities and infrastructures in the future. We push transformative strategies for integrated risk assessment and management to protect HKH communities and their livelihoods from cryosphere hazards such as glacial lake outburst floods, landslides, rockfalls, and ice and snow avalanches.

We have joined hands with our implementing partners in Nepal and Bhutan to establish a Cryosphere Monitoring Programme (CMP), thereby initiating sustainable cryosphere monitoring in the region.

We share data and knowledge on the region through our Regional Cryosphere Knowledge Hub and HKH CryoHub. We build the capacities of partners to monitor the cryosphere and develop practical solutions and policies to manage water resources and risk.

Objectives

Improve knowledge and understanding of the HKH cryosphere and the impacts of climate change on water resources and hazards

Build regional capacity for field-based observation and monitoring, remote sensing-based observations, and modelling of cryosphere and related processes in the region

Integrate traditional knowledge of high-mountain communities into scientific research and decision making

Winners of the story competition

Stories of climate change from across the Hindu Kush Himalaya

Mountain communities are living with the impacts of steady glacier retreat, changing and uncertain snowfall patterns, and increased incidences of cryosphere-related hazards. These changes have direct impacts on the lives and livelihood of mountain communities.

Read more

NEWS AND FEATURES

Around the HKH

For mountains and people

We have a deep history of work across a broad range of issues enabling sustainable development in the complex environment of the HKH. We have been protecting the pulse for over three decades.

Glacial Lake Outburst Floods

A Glacial Lake Outburst Flood, or GLOF, is sudden release of water from a lake fed by glacier melt that has formed at the side, in front, within, beneath, or on the surface of a glacier.

read more

Glaciers

There are an estimated 54,000 glaciers in the HKH. These glaciers cover 60,000 square kilometers and serve as a major source of the water in the region’s rivers, including as much as 40 percent in the Indus River system.

read more

EVENTS AROUND THE HKH

Our involvement

Partners

The Cryosphere Initiative collaborates with different national and regional partners to study and protect the HKH cryosphere.

Learn more
Capacity building: Fostering a sense of ownership and empowerment
Read more
Resources: Looking for datasets, applications, or publications on the HKH cryosphere?
Read more

Frequently Asked Questions

A glacier is a large body of ice, in which ice from a higher elevation is transported to a lower elevation. The body of ice must be at least 30 meters thick for this to take place. The movement of the ice is always from the upper part of the glacier towards the lower end (the snout), regardless of whether the glacier is advancing or retreating.

The glacier may also transport stones, rocks, and boulders inside or on top of the ice. These will eventually be deposited as ‘moraine’ at the edge of the glacier, on the side and at the front, forming moraine ridges. A terminal moraine ridge is formed when a glacier ends at about the same position over an extended period of time.

A glacier can be divided into an accumulation zone and an ablation zone. In the accumulation zone, in the upper part of the glacier, more snow falls than melts during the course of a year. The result is a net gain (income) in the form of snow. In the ablation zone, in the lower part of the glacier, more ice and snow melts than accumulates during the course of a year. The result is a net loss of snow and ice. The lost ice in the ablation zone is replaced by ice from the accumulation zone through the transport of ice from the upper part to the lower part with the help of gravity. The accumulation is determined by deposition from snowfall, and snow and ice avalanches onto the glacier surface. The ablation is determined by the air temperature and solar radiation (heat from the sun) causing melting. Accumulation normally increases with increasing altitude, while melting increases with decreasing altitude.

The altitude where accumulation equals ablation is called the equilibrium line altitude (ELA). The ELA for a particular glacier can only be found by measurement of accumulation and ablation. When, as often, this information is not available, the zero degrees isotherm (ZDI) can be used to give an approximate indication of the ELA. The ZDI is the altitude at which the annual maximum temperature is at or below 0°C in a free atmosphere. The ELA is approximately located at the same altitude as the permanent snowline, the altitude where snow can be found at any time of the year.

The glacier mass balance is the difference between the total accumulation of snow on the glacier and the total ablation of ice and snow calculated over a year. The glacier mass balance can be positive or negative (or zero). If the accumulation is substantially higher than the ablation over a number of years, then the glacier will grow in mass. If the ablation is substantially larger than the accumulation over a number of years, the glacier will reduce its mass.

A glacier is a form of storage. For storage to be in an equilibrium state the input (precipitation/snowfall) at the accumulation zone and output (melting) at the ablation zone should be equal. In other words the mass balance is zero. This balance can be changed as a result of changes in the input (more or less snowfall) and/or changes in the amount of melting (due to warming). Changes in snowfall can result because of changes in the overall annual precipitation, and/or changes in the timing of the precipitation (eg, more falling in the summer as rain). Changes in melting can occur as a result of increased average annual air temperatures, and/or changes in the solar radiation. Melting will be affected if the glacier is covered by moraine, dust, or soot particles (eg, a thin layer of soot on the glacier surface that increases heating, or a thick layer of debris on the surface that acts as an insulator).

A glacier is said to retreat or advance when the position of the end (terminus or snout) of the glacier changes, advancing down the slope or retreating higher up the slope.

In general, a change in the position of a glacier snout is a good indication of change taking place in the total amount of ice in the glacier, but the relationship is not direct; the position of the snout is only an indicator, it does not give exact information about changes (or otherwise) in the amount of ice in the glacier.

If the glacier mass is accumulating faster than it is melting, in other words if the glacier mass balance is positive over a number of years, it will normally result in the glacier snout advancing. Similarly, if the glacier mass balance is negative over a number of years, it will normally result in the glacier snout retreating.

The position of the snout is also influenced by other factors, particularly the bottom topography under the glacier ice, and whether the glacier is covered by moraine or not. For example, a glacier with a negative mass balance can lose ice through decrease of ice thickness without the position of the snout changing.

Some glaciers show a so-called surging behaviour. Such glaciers do not have a straight relationship between the mass balance and the snout position. They may have a stagnant snout position over many years, followed by a very extensive and rapid advance, which in turn is replaced by a (rapid) retreat.

Some glaciers may advance simply because more of the ice mass moves downslope, without any change, or even with a reduction, in the total ice mass. The change is thought to be due to increased elasticity resulting from an increased internal temperature of the ice (similar to heating thick sugar syrup). The glacier then becomes longer but thinner.

In most cases, the rate at which a glacier retreats or advances depends on the rate at which the mass balance (total amount of ice) changes and the size and geometry of the glacier. However, there is a time lag between the change in the glacier mass balance, and the change in its snout position. In other words, the position of the snout may not change for some time after the glacier starts to accumulate or lose ice.

The time that a glacier takes to respond to climatic perturbation causing changes in glacial fluctuation (heating, cooling, changes in precipitation) is called the response time. Larger glaciers have a larger response time or longer time lag; smaller glaciers respond more quickly. For large glaciers, the time lag may be in the range of decades, while for small glaciers it may be a few years.

The extent of deglaciation (loss of ice) and rate of retreat of a glacier is strongly influenced by the altitude. A glacier accumulates ice above the equilibrium line altitude (ELA) and loses ice mass below this altitude. Glaciers that have most of their accumulation area at high altitude are retreating less rapidly than those at lower altitude.

Changes in climate include rising (or lowering) temperatures leading to increased or reduced melting, and changes in the amount and timing of precipitation (snowfall), leading to changes in the amount of accumulation.

In general, changes in the position of the glacier snout, are a good indicator of the mass balance, and thereby of the climate. However, the snout position is only a general indicator. Fluctuation in a glacier terminus is an indirect, delayed, and filtered signal of climate change. Measurements of the mass balance are needed in order to identify any actual changes in the amount of ice in the glacier. Mass balance is a direct and undelayed signal of climate change.

The snout position of glaciers subject to surging may not be in phase with the mass balance, and thereby climatic shifts, and should not be used as a climate indicator. Some glaciers in Pakistan may be subject to surging phenomena.

Observations of a single glacier or group of glaciers in a single small region should not be used to make generalised statements about climate change.

The majority of observations on glacier fluctuation indicate that the Hindu Kush-Himalayan glaciers are retreating substantially, especially in China, India, Nepal, and Pakistan. The glaciers in the Karakorum range are also in a general state of retreat, although some of these glaciers may be advancing.

The glacier observations in the Himalayan region are mainly based on observations of changes in terminus position (from satellite images and some ground-based observations). In most Himalayan glaciers, the retreat can be seen clearly using the position of the Little Ice Age moraine ridges as a baseline.

Mass balance measurements are the only way to determine whether a glacier is really losing volume. Unfortunately mass balance measurements in the Himalayas are rare and intermittent. Until mass balance measurements are available for a variety of glaciers at different altitudes and in different parts of the extended Himalayan ranges (east to west) it will be difficult to make a detailed or accurate scientific assessment of the extent and rate of deglaciation, or of the associated climate change factors.

In general, glaciers have been retreating worldwide since the end of the Little Ice Age (approximately 1850). The rate of glacial retreat has increased since the latter half of the 1900s as a result of a rise in global temperatures (generally thought to be the result of human activity).

In the Himalayas, this has meant a substantial reduction in the size of glaciers with a retreat rate more rapid than the global average. Reported rates of retreat include 160 m per year on average from 1988 to 1993 for the Luggye glacier in Bhutan; and 35 m per year on average from 1984 to 1998 increasing to 60 m per year between 1988 and1993 for the Raphstreng glacier in Bhutan. The valley glaciers on the right flank of the Poiqu Basin on the eastern slope of the Xixiabangma mountains in China retreated at a rate of 45-68m per year over the last twenty-five years with a 100m shift upslope in the elevation of the termini.

The retreat rate is determined by the size and geometry of each glacier, the altitude of the glacier, and the local climatic conditions. There cannot be one representative rate for the whole region and it is not useful to try to establish a range of retreat rates or average retreat rate.

Some observations suggest that the retreat rate of individual glaciers has slowed down recently. This does not necessarily mean a slowing in rate of change of air temperature. Various factors can play a role. For example:

– The retreat rate depends on the ice thickness, determined by the bottom topography. If the terminus retreats into an area with thicker ice, the retreat rate (as seen in the snout position) may decrease although the rate of loss of ice mass may be the same.

– The retreat of the glacier is a response to negative mass balance over a number of years. As the glacier reduces its volume it will approach a new state where accumulation and ablation is similar, i.e. a new steady state position where the glacier is in balance with the climate. When this state is approached (smaller difference between accumulation and ablation) the retreat rate will slow down.

By the end of the century, smaller glaciers below 5000m will probably disappear and larger glaciers will be reduced in mass, manifesting in a reduction in glacier length (retreating snout) and thickness (lowering of ice surface). The reason for this can be summarised as follows: the average position of the zero degree isotherm (ZDI) in the Himalayan ranges is thought to be around 5400 metres above sea level (masl). In other words, above this altitude, the free air temperature never rises above zero. The ZDI is an approximate indicator of the level above which glaciers accumulate ice. The accumulation zones of most Himalayan glaciers extend much higher than this elevation. As overall temperatures rise, the position of the ZDI will also move to higher altitude. For example, a 4°C rise in temperature would cause the ZDI to rise by about 650m to 6050 masl. (Temperatures in the Indian subcontinent are predicted to rise by between 3.5 and 5.5°C by 2100.) Even at this level, many of the Himalayan glaciers will still lie above the ZDI and will continue to exist. Equally, large glaciers will retreat more slowly than small glaciers and even at lower elevations will take longer to disappear completely.

The potential impact of changed precipitation patterns on the glaciers is still poorly understood. Climate change models suggest that there will be changes in both geographical, seasonal, and intensity distribution of rain (and snow) fall. But the specific projections are inconsistent and no general conclusions can be drawn.

The Himalayan glaciers provide the headwaters of ten major rivers in Asia. The glaciers store the water from the time of precipitation in the form of ice and release it slowly over time. The glacier contribution to river flow is most important in the dry season when there is no rainfall and in areas of generally low precipitation. The amount of meltwater depends on the mass of ice available for melting. In the early stages of deglaciation, more ice will melt and there will be more water in the rivers. As the glaciers reach a new equilibrium with a smaller overall mass, melting will be reduced. The timing and quantity of these changes is highly uncertain and needs more research. Changes in water availability will be most important in those river basins where the contribution of meltwater runoff is significant.

Changes in precipitation from snowfall to rainfall (as temperature increases) do not mean that there will be changes in overall (annual) water availability, rather that water previously stored in the form of ice and snow and slowly released over time, will flow directly into the rivers at the time of rainfall. This means more water in the rivers in the rainy season and less in the dry season, which translates into more floods and more droughts, and the need to find alternative forms of water storage. This will have most impact in the upstream areas of rivers where meltwater plays a greater role.

The overall changes in the Himalayan glaciers, with loss of small glaciers and retreat of others, are consistent with an increase in average temperatures, and possibly change in precipitation patterns. Observations of a single glacier (whether small or large) cannot be used to extrapolate any general statements on climate change as there are too many site specific factors that can affect the behaviour of a specific glacier. It is important to compare and summarise observations from a number of glaciers in different areas, of different size, and at different altitudes to draw clear scientifically justified conclusions about the changes that are occurring. Direct measurements of Himalayan glaciers are few and far between, and generally restricted to the more accessible glaciers. Remote observations (from satellites) only show approximate indicators like glacier length and no comparative images are available for historical periods. A much increased level of scientific observation will be needed before the changes in the Himalayan glaciers can be accurately recorded and reliable predictions made. Statements based on individual glacier behaviour may have contributed to recent contradictory interpretations that have appeared in the media.

Cryosphere

Media

Cryosphere in the news
View more
Blogs
View More
e-Bulletin
View more

Cryosphere Publications

You will find publications produced or related to this Initiative in HimalDoc, our publications repository. These resources include journal articles, books, book chapters, research reports, working papers, brochures, information sheets, and publicity materials, among other products.

learn more

WE EMBRACE DIVERSITY

Meet the team

Both internally and externally, our multicultural staff and partners are our greatest asset. They provide us with a broad perspective across disciplines and offer us localized knowledge like no other.

Meet the team

HKH Cryohub

Benefit from a knowledge hub on the region's cryosphere

The collaborative HKH CryoHub is a platform to support knowledge generation and exchange, learning, and networking. It seeks to create better-connected practitioners and decision makers who can collaboratively craft policies relevant to the cryosphere in the HKH.

The HKH Cryohub - Learn more

Related content

Cryosphere

Read more about the Cryosphere Initiative's impactful work.

HKH Cryohub – In the spotlight – Ulfat Majeed
read more
HKH Cryohub – In the spotlight – Arbindra Khadka
read more
Story competition: Stories of climate change from across the Hindu Kush Himalaya
read more
HKH Cryohub – In the spotlight – Iram Bano
read more
HKH Cryohub – In the spotlight – Qiao Liu
read more
HKH Cryohub – In the spotlight – Sonam Lhamo
read more
Cryosphere e-Bulletin
read more
Cryosphere – In the news
read more
Cryosphere – meet CMP alumni
read more
Cryosphere – capacity building
read more
Cryosphere – monitoring approach
read more
Cryosphere – resources
read more
HKH Cryohub – In the spotlight – Smriti Basnet
read more
HKH Cryohub – In the spotlight – Mohan Chand
read more
HKH CryoHub
read more
Cryosphere
read more
explore